
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 16: Low-Rank Approximation and Principal Component
Analysis

1 Overview and Motivation

In this note, we will examine two important, applications of the singular value decomposition (SVD).
The first application is using low rank approximations for dimensionality reduction of data.

Key Idea 1 (Low-Rank Approximation)

Low-rank approximation of a matrix A ∈ Rm×n with rank r is the process of finding another matrix
Aℓ ∈ Rm×n with rank ℓ ≪ r such that A − Aℓ is "small" in some sense.

Our second application is a tool for data analysis. When we collect data, there are a lots of factors
that influence the values we measure. Our goal is to figure out the most important ones. This allows us
to compress our data removing the dimensions("factors") that are not important. We do this via principal
component analysis (PCA).

Key Idea 2 (Principal Component Analysis)

Principal component analysis is a way of capturing the most important dimensions of data.

2 Low-Rank Approximation

Given a matrix A ∈ Rm×n of rank r ≤ min{m, n}, we saw in Note 15 that we can write A using the
outer-product form of the SVD:

A =
r

∑
i=1

σiu⃗i v⃗⊤i . (1)

If our matrix is high-rank, i.e., r ≈ min{m, n}, then almost all the σi will be nonzero and non-negligible.
However, if the data has some linear, low-rank structure, as is usually the case with real data such as images,
most of our singular values will be very small (but usually nonzero due to noise or disturbances). If, say,
the data has intrinsic linear rank ℓ, then the first ℓ singular values are large, and the remaining r − ℓ are
small:

A =
r

∑
i=1

σiu⃗i v⃗⊤i =
ℓ

∑
i=1

σiu⃗i v⃗⊤i +
r

∑
i=ℓ+1

σi︸︷︷︸
≈0

u⃗i v⃗⊤i ≈
ℓ

∑
i=1

σiu⃗i v⃗⊤i . (2)

This motivates approximating the data as

Aℓ :=
ℓ

∑
i=1

σiu⃗i v⃗⊤i (3)

and using this compressed data for further analysis.

1

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

For notation’s sake, if we define

Uℓ :=
[
u⃗1 · · · u⃗ℓ

]
Vℓ :=

[
v⃗1 · · · v⃗ℓ

]
Σℓ :=

σ1

. . .

σℓ

 (4)

then Aℓ = UℓΣℓV⊤
ℓ . Under this notation Ar = UrΣrV⊤

r is the compact SVD of A, so Ar = A.
The approximation of A by Aℓ is justified by the Eckart-Young-Mirsky theorem (sometimes just Eckart-

Young theorem), which says that this is the best rank-ℓ approximation in terms of the Frobenius norm.

Theorem 3 (Eckart-Young-Mirsky Theorem)

Let A ∈ Rm×n have rank r ≤ min{m, n}. For ℓ ≤ r and Aℓ as defined above, we have that

Aℓ ∈ argmin
B∈Rm×n

∥A − B∥2
F (5)

s.t. rank(B) = ℓ. (6)

See Appendix A for the proof. Note that the exact proof of this theorem is out of scope. The theorem is also true
if we use the relaxed constraint rank(B) ≤ ℓ, but the proof is harder and out of scope.

3 Principal Component Analysis

Suppose we have collected some noisy data points, which are represented as vectors x⃗1, . . . , x⃗n ∈ Rd. Let

A :=
[

x⃗1 · · · x⃗n

]
, (7)

be the so-called data matrix, i.e., arranging the data points as the columns of A.
The first step in PCA is always to center the data around its mean 1

n · A⃗1n. That is, we replace A, our
uncentered data matrix, with D := A(In − 1

n 1⃗n⃗1⊤n). More concretely, we subtract the column mean from
each data point in A(note: the symbol 1⃗n ∈ Rn×1 is a vector with all elements being 1).

Suppose rank(D) = r ≤ min{n, d}. Further suppose the so-called "ground truth" data (i.e., data with-
out the noise) actually would span a ℓ-dimensional subspace Sgt of Rd, with ℓ ≤ r. The remaining r − ℓ

dimensions, in this case, would be the product of noise. The goal of principal component analysis (PCA) is
to find, from the noisy data, the relevant ℓ-dimensional subspace Sgt which the dataset spans.

One general approach to solving problems of this type is:

1. Make an objective function which quantifies the property you want to optimize.

2. Optimize the objective function.

This seems very abstract. For our problem, we want to estimate the "best" ℓ-dimensional subspace that our
ground truth data would span. We would then ask what the meaning of "best" is; a quantifiable notion of
"best subspace" is "the one closest to all the points". From here we can develop an objective function that
we can minimize. The objective function would take in a subspace S, and evaluate how close it is to all the
points; it would be the following:

n

∑
i=1

∥∥x⃗i − projS(x⃗i)
∥∥2. (8)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

For some intuition, if n = 4 and d = 2 (i.e., our data set is 4 points in R2), this objective function would be
the sum of the squared lengths of the red lines in this picture, where the subspace S is a black line and the
data points x⃗1, . . . , x⃗4 are blue dots:

Figure 1: Objective function visualization for PCA.

Contrast this to the least squares objective function, which computes the sum of squares of the vertical
residuals (instead of the orthogonal residuals):

Figure 2: Objective function visualization for least squares.

Now, we explore how to compute this objective function. If W ∈ Rd×ℓ has orthonormal columns which
span S, i.e., W⊤W = Iℓ and Col(W) = S, then

projS(x⃗i) = WW⊤ x⃗i. (9)

The above equation follows directly from the least squares derivation of a projection matrix in the case in
which the columns of this projection matrix are orthonormal.

Q(Q⊤Q)−1Q⊤ = QQ⊤ (10)

which means that the matrix QQ⊤ projects a vector onto Col(Q).
This means that our objective function takes the form

n

∑
i=1

∥∥∥x⃗i − WW⊤ x⃗i

∥∥∥2
. (11)

And we would try to minimize this over subspaces S, i.e., over matrices W ∈ Rd×ℓ with orthonormal
columns such that W⊤W = Iℓ. This leads to the following optimization problem, which can be solved via
the SVD.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

Theorem 4 (Principal Component Analysis)

Let x⃗1, . . . , x⃗n ∈ Rd be data points. If A =
[

x⃗1 · · · x⃗n

]
is the data matrix, with SVD A = UΣV⊤,

then

Uℓ ∈ argmin
W∈Rd×ℓ

n

∑
i=1

∥∥∥x⃗i − WW⊤ x⃗i

∥∥∥2
(12)

s.t. W⊤W = Iℓ. (13)

where Uℓ =
[
u⃗1 · · · u⃗ℓ

]
is the first ℓ columns of U.

See Appendix B for the proof.
We may also phrase this result geometrically, in terms of subspaces instead of matrices.

Corollary 5 (Geometric Principal Component Analysis)

Let x⃗1, . . . , x⃗n ∈ Rd be data points. If A =
[

x⃗1 · · · x⃗n

]
is the data matrix, with SVD A = UΣV⊤,

then

SPCA ∈ argmin
S⊆Rd

n

∑
i=1

∥∥x⃗i − projS(x⃗i)
∥∥2 (14)

s.t. dim(S) ≤ ℓ (15)

where SPCA = Span(u⃗1, . . . , u⃗ℓ) is the span of the first ℓ columns of U, and the argmin is taken over
subspaces of Rd.

Definition 6 (Principal Components)

Let A =
[

x⃗1 · · · x⃗n

]
= UΣV⊤ be a data matrix. The principal components of A are the vectors

u⃗1, . . . , u⃗d in that order. (For instance, u⃗1 is the first principal component, u⃗2 is the second principal
component, etc.)

Based on our knowledge of how u⃗i’s are the eigenvectors of AA⊤, we have the following equivalent,
alternate characterization, which tells us how to calculate the principal components without calculating the
SVD.

Theorem 7 (Principal Components as Eigenvectors)

Let A =
[

x⃗1 · · · x⃗n

]
∈ Rd×n be a data matrix. The principal components of D are the eigenvectors

of AA⊤, ordered in non-increasing order by the value of the corresponding eigenvalue, with ties
broken arbitrarilya.

aBy ties, we mean cases in which two or more eigenvalues in the non-increasing sequence are exactly equal.

Putting this into an algorithm gets us the following methods to find principal components, depending
if the data points are columns or rows.

Here the SORT(U, Λ) function sorts the columns of U in non-increasing order by the values on the
diagonal of Λ, breaking ties arbitrarily.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

Algorithm 8 Principal Component Analysis

1: function FINDPRINCIPALCOMPONENTS(A, ℓ)

2: A := Unnormalized Column Data

3: D = A(In − 1
n 1⃗n⃗1⊤n)

4: (U, Λ) := DIAGONALIZE(DD⊤)

5: return Uℓ := the first ℓ columns of SORT(U, Λ)

6: end function

To give an idea of how effective this procedure is, suppose we have the following centered data (blue),
with the "ground truth" subspace Sgt (green) also shown.

Figure 3: A sample dataset with n = 50, d = 2, and dim(Sgt) = 1 (green).

If we also plot the first principal component subspace (shown in orange), we get the following plot.

Figure 4: A sample dataset with n = 50, d = 2, dim(Sgt) = 1 (green), and dim(SPCA) = 1 (orange).

The idea is: the principal components learned from data, are very similar to the true low-rank subspace the ground
truth data lie on! This idea generalizes to many dimensions as well.

See Appendix C for the code that generates these plots.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

Warning 9
All algorithms in this section work for column data – if we are working with row data of the form

A =

x⃗⊤1
...

x⃗⊤n

 ∈ Rn×d, which is very common in modern machine learning applications, we should take

the transpose of the data matrix and then do PCA using the algorithms we already talked about.

4 Denoising and Dimensionality Reduction

Suppose we have a dataset A ∈ Rd×n (where the data points are columns of A) which we perform PCA
on, and get ℓ principal components u⃗1, . . . , u⃗ℓ. Suppose we are given a new noisy vector x⃗ ∈ Rd, and
we know that the "ground truth" de-noised vector approximately lies in our low-rank ℓ-dimensional sub-
space. To recover an estimate for the original ground truth vector, we project onto this subspace, i.e.,
our principal component subspace. From what we know about projections, the formula to project onto
Span(u⃗1, . . . , u⃗ℓ) = Col(Uℓ) is

projSpan(u⃗1,...,⃗uℓ)
(x⃗) = projCol(Uℓ)

(x⃗) = UℓU⊤
ℓ x⃗. (16)

Since this process removes the residual noise and preserves the essential low-rank structure of x⃗, we call it

denoising. This yields another formal algorithm:

Algorithm 10 Denoising using PCA

1: function PCADENOISING(A, x⃗, ℓ)

2: Uℓ := FINDPRINCIPALCOMPONENTS(A, ℓ)

3: return x̂ := UℓU⊤
ℓ x⃗

4: end function

We may also discuss PCA from the viewpoint of data compression and dimensionality reduction. Namely, if
ℓ ≤ d, then we can approximately represent points x⃗ in Rd in our dataset, by vectors w⃗ in Rℓ; these vectors
w⃗ in Rℓ precisely store the coefficients in the linear combination of u⃗1, . . . , u⃗ℓ required to approximately
generate x⃗. The closest point in the ℓ-dimensional principal component subspace to x⃗ is its projection, it has
the formula

projSpan(u⃗1,...,⃗uℓ)
(x⃗) = UℓU⊤

ℓ x⃗ =
ℓ

∑
i=1

⟨x⃗, u⃗i⟩ u⃗i. (17)

Then the coefficients wi which make up our compressed vector w⃗ are precisely the inner products ⟨x⃗, u⃗i⟩,
so we have

w⃗ =

w1
...

wℓ

 =

⟨x⃗, u⃗1⟩

...
⟨x⃗, u⃗ℓ⟩

 =

u⃗⊤

1 x⃗
...

u⃗⊤
ℓ x⃗

 =

u⃗⊤

1
...

u⃗⊤
ℓ

 x⃗ = U⊤
ℓ x⃗. (18)

To summarize, we can represent a vector x⃗ ∈ Rd in our ℓ-dimensional subspace by ℓ coordinates – that is a
vector U⊤

ℓ x⃗ in Rℓ whose entries are the inner products of x⃗ with the first ℓ principal components. Even if x⃗
is not in our ℓ-dimensional subspace, we can represent x⃗ by a vector in Rℓ which approximately generates

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

x⃗ (as opposed to exactly generating x⃗). To recover the original vector (or in the latter case, an estimate for
it), we can just multiply by Uℓ again, which reduces to Algorithm 10.

If ℓ ≪ d then this is a big success for us, since we have compressed our data a lot, and distilled it to its

most important directions of variation.

Algorithm 11 Dimensionality Reduction using PCA

1: function PCADIMENSIONALITYREDUCTION(A, x⃗, ℓ)

2: Uℓ := FINDPRINCIPALCOMPONENTS(A, ℓ)

3: return w⃗ := U⊤
ℓ x⃗

4: end function

Warning 12
All algorithms in this section work for column data – if we are working with row data of the form

A =

x⃗⊤1
...

x⃗⊤n

 ∈ Rn×d, which is very common in modern machine learning applications, we should take

the transpose of the data matrix and then do PCA using the algorithms we already talked about.

5 Picking the Best Number of Principal Components

Throughout this note, we have generated a fixed number of principal components ℓ. This assumes that we
know our ground truth data has an ℓ-dimensional low-rank structure, i.e., it lies on some ℓ-dimensional
subspace Sgt. However, in real-world applications, we would not know the dimensionality of the true Sgt.
There are a few things we can do about this:

1. If we have hardware constraints, like in the lab, and can only take the first few principal components,
then we should just use those.

2. If we are not constrained by hardware, then one thing we can do is the following:

(a) Separate our data into a training set x⃗1, . . . , x⃗ntrain and a validation set x⃗1;val, . . . , x⃗nval;val.

(b) Obtain principal components using only the training data; i.e., find the eigenvectors of Atrain A⊤
train

where Atrain :=
[

x⃗1 · · · x⃗ntrain

]
.

(c) Measure distance to the generated subspace using only the validation data, i.e., compute

nval

∑
i=1

∥∥∥x⃗i;val − UkU⊤
k x⃗i;val

∥∥∥2
. (19)

(d) Stop taking additional components when this distance plateaus, i.e., stays the same after adding
one or two more components. Because the principal component subspace grows larger with
every iteration, our performance never becomes strictly worse with subsequent iterations, even
if we are using the validation set. So, we cannot stop when our performance gets strictly worse;
this is the next best stopping rule.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

This stops us from adding extraneous principal components which actually capture the effect of noise
on the training set. Formally, this can be turned into an algorithm.

In the following algorithm, we include a "stopping parameter" ϵ. This corresponds to a minimum
improvement in the objective function that the new principal component needs to give, or else we
conclude that we are done adding principal components and stop there.

Algorithm 13 A validation algorithm for PCA.

function PCAVALIDATION(Atrain, Aval, ϵ)

U := FINDPRINCIPALCOMPONENTS(Atrain, d)

s0 = +∞ ▷ Objective function value

for i ∈ {1, . . . , d} do

Ui := first i columns of U

Compute si = ∑nval
k=1

∥∥x⃗k;val − UiU⊤
i x⃗k;val

∥∥2

if si − si−1 ≤ ϵ then ▷ Stopping threshold

return i ▷ Return the right number of principal components to use.

end if

end for

return d

end function

Warning 14
All algorithms in this section work for column data – if we are working with row data of the form

A =

x⃗⊤1
...

x⃗⊤n

 ∈ Rn×d, which is very common in modern machine learning applications, we should take

the transpose of the data matrix and then do PCA using the algorithms we already talked about.

6 Examples

6.1 Low-Rank Approximation

The classical example of low-rank approximation is a image compression. More precisely, suppose we have
an image like the below one:

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

Figure 5: The author’s friend’s cat Snyder.

It can be represented as three matrices AR, AG, AB ∈ R4032×3024 corresponding to R, G, and B of the
image. We perform a rank-ℓ approximation AR = UR;ℓΣR;ℓV⊤

R;ℓ, AG = UG;ℓΣG;ℓV⊤
G;ℓ, AG = UG;ℓΣG;ℓV⊤

G;ℓ,
and then compose an image out of them, for different values of ℓ. The results are shown below.

(a) ℓ = 1. (b) ℓ = 5. (c) ℓ = 10.

(d) ℓ = 25. (e) ℓ = 50. (f) ℓ = 100.

By rank 100 approximation, the image is almost perfect. Now, the original image had 3× 4032× 3024 =

36, 578, 304 entries; at rank 100, we have 3 × 100 × (4032 + 3024 + 1) = 2, 117, 100 entries, so we need to
store around 5% of the original image. Not bad!

See Appendix D for some code showing how these images were created.

6.2 PCA

Suppose we, as course staff, have m students in our class and n assignments. Let A ∈ Rm×n be a matrix,
such that the ith student’s grade on the jth assignment is Aij.

• If we consider the assignments to be the data points, then A is a data matrix with column data.
Computing the eigenvectors u⃗1, . . . , u⃗m of AA⊤ provides the principal components of the assignment

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

data. One trend we could potentially see is the following:

– The first principal component u⃗1 might indicate whether the assignment has more theoretical
or applied problems. That is, the projection coefficient of an assignment x⃗ onto the first prin-
cipal component, ⟨x⃗, u⃗1⟩ = (U⊤ x⃗)1, would be a large positive number if the assignment x⃗ is
purely theoretical, a large negative number if the assignment x⃗ is purely application-based, and
somewhere in the middle if the assignment x⃗ has both types of problems.

– The second principal component u⃗2 might then indicate whether the assignment is long or short,
in the same way (looking at the value of the projection coefficient ⟨x⃗, u⃗2⟩ = (U⊤ x⃗)2).

– After a few more principal components, the data would be almost entirely captured by the prin-
cipal component subspace. Any remaining residuals would be due to student performance on
assignments not being perfectly consistent.

• If we consider the students to be the data points, then A is a data matrix with row data. Then the
matrix A⊤ is a data matrix with column data. Computing the eigenvectors v⃗1, . . . , v⃗n of (A⊤)(A⊤)⊤ =

A⊤A provides the principal components of the student data. We would expect something like:

– The first principal component v⃗1 might indicate whether the student prefers lots of applications
or lots of theoretical problems. That is, the projection coefficient of a student y⃗ onto the first prin-
cipal component, ⟨⃗y, v⃗1⟩ = (V⊤y⃗)1, would be a large positive number if the student y⃗ purely
favors theory, a large negative number if the student y⃗ purely favors applications, and some-
where in the middle if the student y⃗ doesn’t strongly prefer one or the other.

– The second principal component v⃗2 might indicate whether the student is an underclassman or
an upperclassman, in the same way (looking at the value of the projection coefficient ⟨⃗y, v⃗2⟩ =
(V⊤y⃗)2).

– After a few more principal components, the data would be almost entirely captured by the prin-
cipal component subspace, with any residuals being due to random variation.

NOTE: None of this section was based off of actual student data analysis; it was just the author’s guess
at what could be large orthogonal directions of variance in this dataset. It is worth realizing that while PCA
is useful for dimensionality reduction, denoising, and noticing patterns in data, the exact features extracted
are not, in general, directly interpretable with respect to the original features of the data. This represents
one limitation of PCA as a feature extraction method. While we can make a an informed guess as to the
nature of the principal components, they are not necessarily explainable via the original data’s features as
you saw in the examples above.

7 Final Comments

Low-rank approximation and principal component analysis are both powerful tools for data compression
and data analysis. They both help us distill data down to its essential linear character, and so make it easy
to work with in future applications such as statistics and machine learning. PCA, in particular, is used as a
powerful pre-processing step in data science.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

A Proof of Theorem 3

Proof of Theorem 3. The proof proceeds in several steps. Let A = UΣV⊤ throughout, and let rank(A) = r.
Recall that we want to show that

Ak ∈ argmin
B∈Rm×n

rank(B)=ℓ

∥A − B∥2
F. (20)

1. Reduce the problem with A down to a problem with Σ.

We use the fact that multiplication by an orthonormal matrix does not change the Frobenius norm to
get

∥A − B∥2
F =

∥∥∥UΣV⊤ − B
∥∥∥2

F
(21)

=
∥∥∥U⊤(UΣV⊤ − B)V

∥∥∥2

F
(22)

=
∥∥∥U⊤UΣV⊤V − U⊤BV

∥∥∥2

F
(23)

=
∥∥∥Σ − U⊤BV

∥∥∥2

F
. (24)

Now since U and V are orthonormal matrices, they are full rank, and so rank(B) = rank(U⊤BV).
Thus if we let X = U⊤BV, the problem reduces to showing that[

Σk 0k×(n−k)

0(m−k)×k 0(m−k)×(n−k)

]
∈ argmin

X∈Rm×n

rank(X)=ℓ

∥Σ − X∥2
F. (25)

2. Reduce the problem with Σ to a problem of finding the best matrix Q with orthonormal columns.

Write, where e⃗i is the ith standard basis vector in Rm,

∥Σ − X∥2
F =

n

∑
i=1

∥(Σ − X)i∥2 (26)

=
n

∑
i=1

∥σi⃗ei − x⃗i∥2. (27)

Since rank(X) = ℓ, the columns of X lie on an ℓ-dimensional subspace, say S which is spanned by the
orthonormal basis Q ∈ Rm×ℓ. Within S, the closest x⃗i to σi⃗ei (i.e., the x⃗i which minimizes ∥σi⃗ei − x⃗i∥2)
is the projection of σi⃗ei onto S = Col(Q), which is given by

x⃗i = projS(σi⃗ei) = projCol(Q)(σi⃗ei) = σiQQ⊤ e⃗i. (28)

Simplifying the terms in the summand of the objective, we have

∥σi⃗ei − x⃗i∥2 =
∥∥∥σi⃗ei − σiQQ⊤ e⃗i

∥∥∥2
(29)

= σ2
i

∥∥∥⃗ei − QQ⊤ e⃗i

∥∥∥2
. (30)

Notice that, by the orthogonality principle, we have

0 =
〈
projS (⃗ei), e⃗i − projS (⃗ei)

〉
=
〈

projCol(Q) (⃗ei), e⃗i − projCol(Q) (⃗ei)
〉
=
〈

QQ⊤ e⃗i, e⃗i − QQ⊤ e⃗i

〉
. (31)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 11

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

Thus, expanding the squared norm,∥∥∥⃗ei − QQ⊤ e⃗i

∥∥∥2
=
〈⃗

ei − QQ⊤ e⃗i, e⃗i − QQ⊤ e⃗i

〉
(32)

=
〈⃗

ei, e⃗i − QQ⊤ e⃗i

〉
−
〈

QQ⊤ e⃗i, e⃗i − QQ⊤ e⃗i

〉
︸ ︷︷ ︸

=0

(33)

=
〈⃗

ei, e⃗i − QQ⊤ e⃗i

〉
(34)

= ⟨⃗ei, e⃗i⟩ −
〈⃗

ei, QQ⊤ e⃗i

〉
(35)

= ⟨⃗ei, e⃗i⟩ −
〈

Q⊤ e⃗i, Q⊤ e⃗i

〉
(36)

= ∥⃗ei∥2 −
∥∥∥Q⊤ e⃗i

∥∥∥2
(37)

= 1 −
∥∥∥Q⊤ e⃗i

∥∥∥2
. (38)

Therefore, simplifying the original problem, we have

argmin
Q∈Rm×ℓ

Q⊤Q=Iℓ

n

∑
i=1

σ2
i

(∥∥∥⃗ei − QQ⊤ e⃗i

∥∥∥2
)
= argmin

Q∈Rm×ℓ

Q⊤Q=Iℓ

n

∑
i=1

σ2
i

(
1 −

∥∥∥Q⊤ e⃗i

∥∥∥2
)

(39)

= argmax
Q∈Rm×ℓ

Q⊤Q=Iℓ

n

∑
i=1

σ2
i

∥∥∥Q⊤ e⃗i

∥∥∥2
(40)

= argmax
Q∈Rm×ℓ

Q⊤Q=Iℓ

n

∑
i=1

∥∥∥Q⊤(σi⃗ei)
∥∥∥2

(41)

= argmax
Q∈Rm×ℓ

Q⊤Q=Iℓ

∥∥∥Q⊤Σ
∥∥∥2

F
. (42)

since the squared Frobenius norm is the sum of the squared norms of the columns.

Thus, the following are equivalent problems:

(a) Find a rank-ℓ matrix X which minimizes ∥Σ − X∥2
F.

(b) Find a dimension-ℓ subspace S which minimizes ∑n
i=1
∥∥σi⃗ei − projS(σi⃗ei)

∥∥;

(c) Find a matrix Q ∈ Rm×ℓ such that Q⊤Q = Iℓ, which maximizes
∥∥Q⊤Σ

∥∥2
F.

And so the third problem is the one we would like to solve.

3. Reduce the problem of finding the best matrix Q with orthonormal columns to a problem with purely real
numbers.

Write the columns of Q as Q =
[⃗
q1 · · · q⃗ℓ

]
. Then we can simplify the Frobenius norm as

∥∥∥Q⊤Σ
∥∥∥2

F
=

∥∥∥∥∥∥∥∥

q⃗⊤1
...

q⃗⊤ℓ

 [σ1⃗e1 · · · σn⃗en

]∥∥∥∥∥∥∥∥
2

F

(43)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 12

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

=

∥∥∥∥∥∥∥∥

σ1 ⟨⃗e1, q⃗1⟩ · · · σn ⟨⃗en, q⃗1⟩
...

. . .
...

σ1 ⟨⃗e1, q⃗ℓ⟩ · · · σn ⟨⃗en, q⃗ℓ⟩

∥∥∥∥∥∥∥∥

2

F

(44)

=
n

∑
i=1

ℓ

∑
j=1

σ2
i
〈⃗
ei, q⃗j

〉2 (45)

=
n

∑
i=1

ℓ

∑
j=1

σ2
i Q2

ij (46)

=
n

∑
i=1

σ2
i

ℓ

∑
j=1

Q2
ij (47)

=
n

∑
i=1

σ2
i di (48)

=
r

∑
i=1

σ2
i di (49)

where di := ∑ℓ
j=1 Q2

ij. The last simplification is because only the first r singular values are nonzero.

As the sum of squared numbers, di ≥ 0. We show that di ≤ 1. Indeed, let Q̂ be the extension of Q to
an orthonormal basis of Rm; in particular, define Q̂ =

[
Q Q̃

]
where Q̃ ∈ Rm×(m−ℓ) has orthonormal

columns, so that Q̂ ∈ Rm×m is an orthonormal square matrix. Then Q̂ has orthonormal rows (and
columns), so each of its rows is unit norm, so

1 =
m

∑
j=1

Q̂2
ij (50)

=
ℓ

∑
j=1

Q̂2
ij +

m

∑
j=ℓ+1

Q̂2
ij (51)

=
ℓ

∑
j=1

Q2
ij +

m−ℓ

∑
j=1

Q̃2
ij (52)

= di +
m−ℓ

∑
j=1

Q̃2
ij︸︷︷︸

≥0

(53)

=⇒ di ≤ 1. (54)

Now, since Q is orthonormal, this also gives us a constraint on the di; indeed,

ℓ =
ℓ

∑
j=1

∥∥⃗qj
∥∥2 (55)

=
ℓ

∑
j=1

m

∑
i=1

Q2
ij (56)

=
m

∑
i=1

ℓ

∑
j=1

Q2
ij (57)

=
m

∑
i=1

di. (58)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 13

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

This gives the problem:

max
d1,...,dm∈R

r

∑
i=1

σ2
i di (59)

s.t. di ≥ 0 i ∈ {1, . . . , m} (60)

di ≤ 1 i ∈ {1, . . . , m} (61)
m

∑
i=1

di = ℓ. (62)

Once we solve this problem, we can convert its answer onto constraints on Q. Any solution to this
problem which has a corresponding Q will surely maximize

∥∥Σ⊤Q
∥∥2

F; it is left to solve this problem
and prove that a solution has a corresponding Q.

4. Solve the numerical problem and find a maximizer.

One can show by a so-called exchange argument, or by inspection, that one maximizer of this problem
is d⋆1 = · · · = d⋆ℓ = 1 and d⋆ℓ+1 = · · · = d⋆m = 0, at which point the optimal value is

r

∑
i=1

σ2
i d⋆i =

ℓ

∑
i=1

σ2
i . (63)

5. Using the solution to the numerical optimization problem, find a Q⋆ which maximizes
∥∥Q⊤Σ

∥∥2
F.

Note that the quantity di is the squared norm of the ith row of Q. Thus we are looking for a matrix
Q⋆ ∈ Rm×ℓ which has:

• orthonormal columns;

• the 1st through ℓth rows have unit norm;

• the (ℓ+ 1)th through mth rows are 0⃗⊤.

A Q⋆ which satisfies this is given by Q⋆ =

[
Iℓ

0(m−ℓ)×ℓ

]
. Thus this Q⋆ maximizes

∥∥Q⊤Σ
∥∥2

F among all

Q ∈ Rm×ℓ with orthonormal columns.

6. Compute the original objective function using this Q⋆ and show that it reduces to ∥A − Ak∥2
F.

We have that

min
B∈Rm×n

rank(B)=ℓ

∥A − B∥2
F = min

X∈Rm×n

rank(X)=ℓ

∥Σ − X∥2
F (64)

=
∥∥∥Σ − Q⋆Q⊤

⋆ Σ
∥∥∥2

F
(65)

=

∥∥∥∥∥∥
[

Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
−
[

Iℓ
0(m−ℓ)×ℓ

] [
Iℓ

0(m−ℓ)×ℓ

]⊤ [
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]∥∥∥∥∥∥
2

F
(66)

=

∥∥∥∥∥
[

Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
−
[

Σℓ 0ℓ×(n−ℓ)

0(m−ℓ)×ℓ 0(m−ℓ)×(n−ℓ)

]∥∥∥∥∥
2

F

(67)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 14

http://www.cs.cornell.edu/courses/cs482/2003su/handouts/greedy_exchange.pdf

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

=

∥∥∥∥∥U

([
Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

]
−
[

Σℓ 0ℓ×(n−ℓ)

0(m−ℓ)×ℓ 0(m−ℓ)×(n−ℓ)

])
V⊤
∥∥∥∥∥

2

F

(68)

=

∥∥∥∥∥UΣV⊤ − U

[
Σℓ 0ℓ×(n−ℓ)

0(m−ℓ)×ℓ 0(m−ℓ)×(n−ℓ)

]
V⊤
∥∥∥∥∥

2

F

(69)

= ∥A − Aℓ∥2
F. (70)

Thus
Aℓ ∈ argmin

B∈Rm×n

rank(B)=ℓ

∥A − B∥2
F (71)

and the proof is complete.

B Proof of Theorem 4

Proof of Theorem 4. We first simplify each term in the objective function.∥∥∥x⃗i − WW⊤ x⃗i

∥∥∥2
=
〈

x⃗i − WW⊤ x⃗i, x⃗i − WW⊤ x⃗i

〉
(72)

= ⟨x⃗i, x⃗i⟩ −
〈

WW⊤ x⃗i, x⃗i

〉
−
〈

x⃗i, WW⊤ x⃗i

〉
+
〈

WW⊤ x⃗i, WW⊤ x⃗i

〉
(73)

= ⟨x⃗i, x⃗i⟩ − 2
〈

WW⊤ x⃗i, x⃗i

〉
+
〈

WW⊤WW⊤ x⃗i, x⃗i

〉
(74)

= ⟨x⃗i, x⃗i⟩ − 2
〈

WW⊤ x⃗i, x⃗i

〉
+
〈

WW⊤ x⃗i, x⃗i

〉
(75)

= ⟨x⃗i, x⃗i⟩ −
〈

WW⊤ x⃗i, x⃗i

〉
(76)

= ⟨x⃗i, x⃗i⟩ −
〈

W⊤ x⃗i, W⊤ x⃗i

〉
(77)

= ∥x⃗i∥2 −
∥∥∥W⊤ x⃗i

∥∥∥2
. (78)

Thus we can reduce the optimization of the objective to the simpler optimization

argmin
W∈Rn×ℓ

W⊤W=Iℓ

n

∑
i=1

∥∥∥x⃗i − WW⊤ x⃗i

∥∥∥2
= argmin

W∈Rn×ℓ

W⊤W=Iℓ

n

∑
i=1

[
∥x⃗i∥2 −

∥∥∥W⊤ x⃗i

∥∥∥2
]

(79)

= argmax
W∈Rn×ℓ

W⊤W=Iℓ

n

∑
i=1

∥∥∥W⊤ x⃗i

∥∥∥2
. (80)

Now expanding the squared norm in terms of the sum of squares of each entry, we have

n

∑
i=1

∥∥∥W⊤ x⃗i

∥∥∥2
=

n

∑
i=1

ℓ

∑
k=1

(w⃗⊤
k x⃗i)

2 (81)

=
n

∑
i=1

ℓ

∑
k=1

w⃗⊤
k x⃗i x⃗⊤i w⃗k (82)

=
ℓ

∑
k=1

n

∑
i=1

w⃗⊤
k x⃗i x⃗⊤i w⃗k (83)

=
ℓ

∑
k=1

w⃗⊤
k

(
n

∑
i=1

x⃗i x⃗⊤i

)
w⃗k (84)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 15

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

=
ℓ

∑
k=1

w⃗⊤
k

(
AA⊤

)
w⃗k. (85)

Computing AA⊤ = UΣΣ⊤U⊤, we have

n

∑
i=1

∥∥∥W⊤ x⃗i

∥∥∥2
=

ℓ

∑
k=1

w⃗⊤
k

(
AA⊤

)
w⃗k (86)

=
ℓ

∑
k=1

w⃗⊤
k UΣΣ⊤U⊤w⃗k. (87)

We introduce the change of coordinates ⃗̃wk := U⊤w⃗k. Note that since the w⃗k are orthonormal, so too are the
⃗̃wk. Expanding out ΣΣ⊤, we have

n

∑
i=1

∥∥∥W⊤ x⃗i

∥∥∥2
=

ℓ

∑
k=1

w⃗⊤
k UΣΣ⊤U⊤w⃗k (88)

=
ℓ

∑
k=1

⃗̃w
⊤
k ΣΣ⊤⃗̃wk (89)

=
ℓ

∑
k=1

⃗̃w
⊤
k

σ2
1

. . .

σ2
r

0
. . .

0

⃗̃wk (90)

(91)

Since the ⃗̃wk’s are orthonormal, a maximizing choice of ⃗̃w1, . . . , ⃗̃wℓ is e⃗1, . . . , e⃗ℓ (i.e., the standard basis vec-
tors)1 – at which point the objective value is ∑ℓ

k=1 σ2
k . The corresponding w⃗k is given by

w⃗k = U⃗̃wk = Ue⃗k = u⃗k (92)

so a maximizing W is Uℓ as desired.

1There are other maximizers; for example, any permutation of the first ℓ standard basis vectors, or if some singular values are equal
then those can also be hit by an e⃗k .

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 16

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

C Code for PCA Plots

import numpy as np

import matplotlib.pyplot as plt

import pathlib

rng = np.random.RandomState (16)

n = 50

sigma = 0.1

s_vec = rng.randn(2, 1) # (2, 1)

X = s_vec @ rng.randn(1, n) + sigma * rng.randn(2, n) # (2, 50)

plt.axline ((0, 0), s_vec.reshape(2,), color=’green ’)

plt.scatter(X[0], X[1])

plt.savefig(pathlib.Path("figures") / "pca_data.png")

U, S, Vh = np.linalg.svd(X)

plt.axline ((0, 0), U[:, 0], color=’orange ’)

plt.savefig(pathlib.Path("figures") / "pca.png")

D Code for Low-Rank Compression

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.image import imread

import pathlib

img = imread(pathlib.Path("figures") / "snyder.jpg")

A_R , A_G , A_B = img[:, :, 0], img[:, :, 1], img[:, :, 2]

normalize to [0, 1]

A_R = A_R.astype(np.single) / 255

A_G = A_G.astype(np.single) / 255

A_B = A_B.astype(np.single) / 255

Now take SVD and truncate to get approximations

U_R , S_R , Vh_R = np.linalg.svd(A_R)

U_G , S_G , Vh_G = np.linalg.svd(A_G)

U_B , S_B , Vh_B = np.linalg.svd(A_B)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 17

EECS 16B Note 16: Low-Rank Approximation and Principal Component Analysis 2024-04-19 12:54:00-07:00

Sigma_R , Sigma_G , Sigma_B = np.diag(S_R), np.diag(S_G), np.diag(S_B)

for l in (1, 5, 10, 25, 50, 100):

img_l = np.zeros(shape=img.shape)

img_l[:, :, 0] = U_R[:, :l] @ Sigma_R [:l, :l] @ Vh_R[:l]

img_l[:, :, 1] = U_G[:, :l] @ Sigma_G [:l, :l] @ Vh_G[:l]

img_l[:, :, 2] = U_B[:, :l] @ Sigma_B [:l, :l] @ Vh_B[:l]

plt.imshow(img_l)

plt.savefig(pathlib.Path("figures") / f"snyder_{l}.jpg")

Contributors:• Druv Pai.
• Rahul Arya.
• Anant Sahai.
• Ayan Biswas.
• Ashwin Vangipuram.
• Kamyar Salahi.
• Matteo Guarrera.
• Aakarsh Vermani.
• Chancharik Mitra.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 18

	Overview and Motivation
	Low-Rank Approximation
	Principal Component Analysis
	Denoising and Dimensionality Reduction
	Picking the Best Number of Principal Components
	Examples
	Low-Rank Approximation
	PCA

	Final Comments
	Proof of thm:eckartyoung
	Proof of thm:pca
	Code for PCA Plots
	Code for Low-Rank Compression

