EECS 16B
Designing Information Devices and Systems II
Department of Electrical Engineering and Computer Sciences

Profs. Shyam Parekh, Jean-Paul Tennant and Ming Wu

October 12, 2023
A little bit about myself ...

• Live in Orinda with my wife and two children.
• Grew up in India and received PhD from EECS, UC Berkeley.
• Primary research area is networks.
• Divide my time between academia and industries.
• Currently focusing on performance issues in 5G networks.
• Fond of hiking/trekking, photography, cricket, tennis, ...
• Like to understand things starting from the basics.
Important Quiz ...
System-Level Issues

• System-Level Model
• Stability
• Impact of Feedback
• Controllability & Reachability
• Minimum Energy Control
• Linearization of a Non-Linear Model
• ...

...
Discrete-Time System Model

\[\ddot{x}_d[i+1] = A_d \ddot{x}_d[i] + B_d \dot{u}_d[i] + \ddot{w}_d[i] \]

(Going forward, we’ll drop the subscript d for simplicity.)
Scalar Discrete-Time System Model

\[x[i+1] = ax[i] + bu[i] + w[i] \]

System Identification Problem: Find the model parameters a & b.

There are 2 unknowns.

Collect data by choosing \(u[k], k: 0, \ldots, T-1 \)

measuring \(x[k], k: 0, \ldots, T \)

\[
\begin{align*}
 x[1] &\approx ax[0] + bu[0] \\
 \vdots \\
 x[T] &\approx ax[T-1] + bu[T-1]
\end{align*}
\]
Let's write the eigs as

\[\begin{bmatrix} X[0] & u[0] \\ \vdots & \vdots \\ X[T-1] & u[T-1] \end{bmatrix} \rightarrow \begin{bmatrix} q_0 \\ b \end{bmatrix} \rightarrow \begin{bmatrix} X[0] \\ \vdots \\ X[T] \end{bmatrix} \]

\[T \times 2 \quad 2 \times 1 \quad T \times 1 \]

Data Parameters State

\[D \rightarrow P \rightarrow S \]

Least Squares soln:

\[P = (D^T D)^{-1} D^T S \]

\[\rightarrow \text{Need } D^T D \text{ to be invertible.} \]

\[S = S + e \]

\[S = D P \rightarrow \text{Column space } A \sim D \]

\[D = [v_1 \ldots v_n] \begin{bmatrix} \lambda_1^* \\ \vdots \\ \lambda_n^{*1} \end{bmatrix} = \lambda_1^* v_1 + \ldots + \lambda_n^{*1} v_n \]
\[D^T e^2 = 0 \]
\[D^T (S - D \hat{P}) = 0 \]
\[D^T S - D^T D \hat{P} = 0 \]
\[D^T S \hat{P} = \underbrace{D^T D \hat{P}}_{\hat{S}} \]
\[\hat{P} = (D^T D)^{-1} D^T S \]
Vector Discrete-Time System Model

\[\tilde{x}[i+1] = A\tilde{x}[i] + B\tilde{u}[i] + \tilde{w}[i] \]

System Identification Problem: Find the model parameters A & B.

\[\tilde{x}[i] \text{ is } n \text{-dim vector} \]
\[\tilde{u}[i] \text{ is } m \text{-dim vector} \]

\[A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\top} \quad n \times n \]
\[B = \begin{bmatrix} b_1 & \cdots & b_m \end{bmatrix}^{\top} \quad n \times m \]

Note: A is unknown.

\[A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}^{\top} \quad n \times n \]
Let's present \(E_{ij} \) for L-S formulation:

Let's focus on row \(r \):

\[
x_{r[i+1]} = \overrightarrow{U_j^T} \overrightarrow{X_{[i]}} + \overrightarrow{b_{r^i}} \overrightarrow{U_{[i]}}
\]

Scalar \(1 \times n \) \(n \times 1 \) \(1 \times m \) \(m \times 1 \)

\[
\begin{bmatrix}
\overrightarrow{x_{[0]}} & \overrightarrow{u_{[0]}} \\
\overrightarrow{x_{[r-1]}} & \overrightarrow{u_{[r-1]}}
\end{bmatrix}
\begin{bmatrix}
\overrightarrow{a_r} \\
\overrightarrow{b_{r^i}}
\end{bmatrix}
\overset{\text{vertically stacked}}{\rightarrow}
\begin{bmatrix}
\overrightarrow{x_{r[i]}} \\
\overrightarrow{x_{r[i+1]}}
\end{bmatrix}
\]

\(T \times (n+m) \) \((n+m) \times 1 \) \(T \times 1 \)

\[
D \overset{\rightarrow}{Pr} \overset{\rightarrow}{S_0}
\]
Least squares estimation:

\[\hat{P}_r = (D^T D)^{-1} D^T S_r \Rightarrow \hat{P}_r = M \cdot S_r \]

- \(D^T D \) is assumed to be invertible
- \(D^T D \) is \((n+m) \times (n+m)\)
- \(M \) does not depend on \(r \)
- \(M \) is \((n+m) \times T\)

\[S_r = D \hat{P}_r \]

\[e = S_r - D \hat{P}_r \]

\[\hat{P}_r = M \cdot S_r \]

\[P = M \cdot S^T \]

\[\begin{bmatrix} x_1(0) & \ldots & x_n(0) \\ x_1(1) & \ldots & x_n(1) \end{bmatrix} \]
Least Squares: \[A = M S \]

\[
\begin{bmatrix}
\hat{A} \\
\hat{B}
\end{bmatrix} = \begin{bmatrix}
X_0 \quad [T] \\
X_C \quad [T]
\end{bmatrix}
\]

\[
A = (D^TD)^{-1} D^TS
\]

\[
(n+m)n = n^2 + mn
\]

Parameters

Note: \(T \geq n+m\) Why?

(Since the Least Squares formulation for \(a^r \& b^r\) has \(n+m\) unknowns)
Validation

• How good is \hat{P}?
 – Gold Standard: Use it in the discrete-time model with to see if specific $\tilde{u}[i]'s$ result in the desired $\tilde{x}[i]'s$.
 – Silver Standard: Test \hat{P} against some test data.

\[\begin{align*}
 \tilde{x}_{\text{test}}[0] & \cdots \\
 \tilde{u}_{\text{test}}[0] & \cdots \\
\end{align*} \]
Is $D^T D$ invertible?

• $\text{Null}(D^T D) = \text{Null}(D)$.
 – Hence, if D has linearly independent columns, $D^T D$ will also have linearly independent columns.
 – Hence, if D has linearly independent columns, $D^T D$ is invertible.

• Highly likely that D has linearly independent columns.
 – Also, we have some control over D.

• We’ll deal with the case of non-invertible $D^T D$ when we discuss SVD (and Moore-Penrose Pseudoinverse).
$$\text{Null}(D^TD) = \text{Null}(D)$$

Proof: Suppose $$\bar{v} \in \text{Null}(D^TD)$$

$$D^TD\bar{v} = 0$$

$$\Rightarrow \quad \bar{v}^T D^T D \bar{v} = 0$$

$$\Rightarrow (DV)^T DV = 0$$

$$\Rightarrow \quad \|DV\|^2 = 0$$

$$\Rightarrow \quad DV = 0 \Rightarrow \quad \bar{v} \in \text{Null}(D)$$

Suppose $$\bar{v} \in \text{Null}(D)$$

$$\Rightarrow \quad D\bar{v} = 0$$

$$\Rightarrow \quad D^T D\bar{v} = 0 \Rightarrow \quad \bar{v} \in \text{Null}(D^TD)$$
If \(D \) has linearly ind. columns

\[= \quad D^TD \quad \text{has linearly ind. columns.} \]

Proof:

\[D = \begin{bmatrix} v_1 & \cdots & v_m \end{bmatrix} \]

\(D \) is full column rank

\[
\text{rank}(D) + \text{nullity}(D) = m + n \leq m + n
\]

\[\Rightarrow \quad \text{nullity}(D) = 0 \]

\[\Rightarrow \quad \text{nullity}(D^TD) = 0 \]

\[\Rightarrow \quad D^TD \quad \text{is full rank} \]