Lecture 3

- Computing: Transistors & Logic
 + RC transients [finish]
 + Non-homogeneous diff. eqns.
 + constant input
 + piece-wise constant input
 + continuous input

- Scaled

\[V_x(t) = V_{dd} e^{-\frac{t}{\tau}}, \quad t \geq 0 \]

\[V = R_{on,m} \cdot (C_{gm} + C_{gs}) \]

determines the speed of transition

\[\tau_1 < \tau < \tau_2 \]

What happens for

If you make transistors smaller \(\Rightarrow B \leq V \)

Demand scaling \(\Rightarrow \) Moore's law (economics law)
KCL: \[I_1 + I_2 + I_3 = 0 \]

Elements:
\[V_1 = I_1 \cdot R_{on, pm} \]
\[I_2 = C_{m2} \cdot \frac{dV_2}{dt} \]
\[I_3 = C_{op2} \cdot \frac{dV_3}{dt} \]

\[V_1 = V_x - Vdd \]
\[V_2 = V_x \]
\[V_3 = V_x - Vdd \]

From KCL & Elements:
\[\frac{V_1}{R_{on, pm}} + C_{m2} \frac{dV_2}{dt} + C_{op2} \frac{dV_3}{dt} = 0 \]
\[I_1 \quad I_2 \quad I_3 \]

From voltages:
\[\frac{V_x - Vdd}{R_{on, pm}} + C_{m2} \frac{dV_x}{dt} + C_{op2} \frac{dV_x}{dt} (V_x - Vdd) = 0 \]
\[\int \frac{dVdd}{dt} = 0 \]
\[\frac{V_x - Vdd}{R_{on, pm}} + C_{m2} \frac{dV_x}{dt} + C_{op2} \frac{dV_x}{dt} = 0 \]

(1) \[\frac{V_x - Vdd}{R_{on, pm}} + (C_{m2} + C_{op2}) \frac{dV_x}{dt} = 0 \]

\[\frac{dV_x}{dt} = \frac{-V_x}{R_{on, pm} (C_{m2} + C_{op2})} + \frac{Vdd}{R_{on, pm} (C_{m2} + C_{op2})} \]

\[\text{homogeneous term} \quad \text{non-homogeneous term} \]
Form: \[\frac{d}{dt} x(t) = \lambda x(t) \] (homogeneous)
\[\frac{d}{dt} x(t) = \lambda x(t) + a \] (non-homogeneous)

Go back to (1)
\[\frac{V_x - Vdd}{R_{on,1n}} + (C_{on2} + C_{onp2}) \cdot \frac{d}{dt} (V_x - Vdd) = 0 \]

Try change of variables to transform the problem into one we know how to solve.
\[\tilde{V}_x = V_x - Vdd \]
\[\frac{\tilde{V}_x}{R_{on,1n}} + (C_{on2} + C_{onp2}) \cdot \frac{d}{dt} \tilde{V}_x = 0 \]

We already know how to solve this.
\[\tilde{V}_x(t) = \tilde{V}_x(0) \cdot e^{-\frac{t}{\tilde{V}_x}} , \ t \geq 0 \]
\[V_x(t) = Vdd - (V_x(0) - Vdd) \cdot e^{-\frac{t}{Vdd}} \]
\[V_x(0) = 0V \]
Consider:

\[V_{in}(t) \xrightarrow{\text{how short?}} V_{x}(t) \xrightarrow{\text{shrink}} \]

Will \(V_x(t) \) be able to follow these changes as a "logic" signal (i.e. to reach 0V or Vdd)?

\[V_{dd} \quad V_{dd} \cdot \frac{t_1}{T_1} \quad V_{dd} \cdot \frac{t_2}{T_2} \quad V_{dd} \cdot \frac{t_3}{T_3} \quad \cdots \]

\[V_{in}(t) \quad V_{in}(t) \quad V_{in}(t) \quad V_{in}(t) \quad \cdots \]

\[t_0 \quad t_0 + T_1 \quad t_0 + T_1 + T_2 \quad t_0 + 2T_1 + 2T_2 \]

\[V_{x}(t) \quad V_{x}(t) \quad V_{x}(t) \quad V_{x}(t) \quad \cdots \]

\[\text{Will } V_{x}(t) \text{ be able to follow these changes as a "logic" signal (i.e. to reach 0V or Vdd)?} \]
\[T_1 < T < T_2 \]

Limit condition is no dryer. It is actually \(V_x(t_0 + T_1) = \)
\[= Vdd : e^{\frac{t_0 + T_1 - t_0}{T}} = \]
\[= Vdd : e^{\frac{T}{T_2}} \]

Use previous \(V_x(t) \) solution as an initial condition for the next interval.

Solutions for piece-wise constant input:

Form: \(\frac{d}{dt} x(t) = \lambda x(t) - \lambda u(t) \in \text{constant} \)

or piece-wise constant

What we also want to solve is \(u(t) = u_c(t) \)

\(u_c(t) \)

\[u(t) \neq u_c(t) \]

\[u(t) \to u_c(t) \]

\[\Delta \to 0 \]

\(u(t) = \text{const}, t \in [t_0, t_0 + \Delta] \)

Iterate & use the previous solution as initial condition

Then let \(\Delta \to 0 \) for \(u(t) \) to approach \(u_c(t) \)
in the limit (disc. + hw)
Why do we want to know the response to continuous time input?

EECS 16AB Pipeline

- Sense analog inputs
- Process digital inputs
- Actuate
- Sense output

Sensing: brain signals or voice signals

Signal of interest + interference

Design sensor cnets to ride this up, unwanted

The goal:
Filter/select signals of interest and reject interference.

How can a circuit become a filter - process the input continuous-time signal?