Lecture 2

* Computing: Transistors & Logic
* Transistor RC model
* Solving RC circuits
* RC transients

MOSFET (metal-oxide semiconductor field effect transistor) invented in 1955-60 by Atolia & Kailing

NMOS = n-channel MOSFET
PMOS = p-channel MOSFET

In the past and some present:

Planar devices

NMOS

\[
\begin{align*}
\text{S} & \quad \text{G} \\
\text{P} & \quad \text{D} \\
\text{Silicon} \\
\end{align*}
\]

PMOS

\[
\begin{align*}
\text{S} & \quad \text{G} \\
\text{G}_{on} (\text{gate capacitance}) \\
\text{R}_{on} (\text{channel on-resistance}) \\
\text{V}_{gs} > \text{V}_{thn} \Rightarrow \text{ON} \\
\text{V}_{gs} < \text{V}_{thn} \Rightarrow \text{OFF} \\
\end{align*}
\]
Today:

FinFET channel length = Snm

Future:

For more details take 105, 151, 150

To analyze this RC model we need to understand RC circuits.

Solving RC circuits:

Elements:

\[I_2 = C \cdot \frac{dV_x}{dt} \]

\[V_x = I_1 \cdot R \]

KCL:

\[I_1 + I_2 = 0 \]

Want to find \(V_x(t) \) for \(t > 0 \).

\[I_1 = \frac{V_x}{R} \Rightarrow \frac{V_x}{R} + C \frac{dV_x}{dt} = 0 \]

\[I_2 = C \frac{dV_x}{dt} \]

\[\frac{dV_x}{dt} = -\frac{V_x}{RC} \]

First order differential equation

Guess: \(V_x(t) = a \cdot e^{bt} \) (educated guess based on the properties of the derivative)
Initial condition:

\[t=0: \quad V_x(0) = a \cdot e^{b \cdot 0} = a \]

\[\frac{d}{dt} V_x(t) = \frac{1}{R} \left(a \cdot e^{b \cdot t} \right) = a \cdot b \cdot e^{b \cdot t} = b \cdot V_x(t) \]

Since \[\frac{dV_x}{dt} = -\frac{V_x}{RC} \Rightarrow b = -\frac{1}{RC} \]

\[V_x(t) = V_x(0) e^{-\frac{t}{RC}} \]

is a solution to

\[\frac{dV_x}{dt} = -\frac{V_x}{RC} \]

\[\frac{dV_x}{dt} \bigg|_{t=0} = -\frac{V_x(0)}{RC} \]

\[T \quad \text{is the time constant of the RC circuit} \]

Check for uniqueness of the guess:

Suppose \(y(t) \) which also solves D.E.

\[x(t) = x_0 \quad (1) \quad V_x(t) = y(t) \]

Shorter notation:

\[\frac{d}{dt} x(t) = x(t) \quad (2) \quad b = -\frac{1}{RC} \]
In (1) we guessed & checked that

\[x_d(t) = x_0 \cdot e^{\lambda t}, \quad t \geq 0 \]

i.e. satisfies (1) + (2)

In (2) need to prove \(y(t) = x_d(t) \)

i.e. the solution is unique.

Either prove \(\frac{dy(t)}{dx_d(t)} = 1 \) \(\Rightarrow y(t) - x_d(t) = 0 \)

\[\frac{y(t)}{x_d(t)} = \frac{y(t)}{x_0 e^{\lambda t}} \]

For \(y(t) \) is a solution:

\[\int_{x_0}^{y(t)} \frac{1}{y(t)} dy(t) = \int_{x_0}^{x_d(t)} \frac{1}{x_0 e^{\lambda t}} dx_0 \]

\[\frac{d}{dt} \left(\frac{y(t)}{x_d(t)} \right) = \frac{d}{dt} \left(\frac{y(t)}{x_0 e^{\lambda t}} \right) = \frac{1}{x_0} \frac{d}{dt} \left(y(t) \cdot e^{-\lambda t} \right) = \]

\[= \frac{1}{x_0} \left(\frac{d}{dt} y(t) \cdot e^{\lambda t} + y(t) (-\lambda) \cdot e^{-\lambda t} \right) = \]

\[= \frac{1}{x_0} \left(\lambda y(t) e^{-\lambda t} - \lambda y(t) e^{-\lambda t} \right) = 0 \]

\(\Rightarrow \frac{y(t)}{x_d(t)} = a \) (constant)

\(t \geq 0 \)

From (1) \(x(0) = x_0 \)

\(y(0) = x_0 \) since \(y(t) \) is also a solution.
\[
\frac{y(0)}{
\left.\frac{\partial y}{\partial x} \right|_{x=0}} = \frac{x_0}{X_0 e^{x_0}} = \frac{x_0}{x_0} = 1 = a
\]

\[
\Rightarrow \quad \frac{\partial y}{\partial x}(t) = a = 1 \Rightarrow y(t) = x(t)
\]

so the solution
\[
x(t) = x_0 e^{at}
\]

is unique.

Now we can use this to solve transistors circuits with RC model.

![Logic circuit diagram](https://via.placeholder.com/150)

![CMOS circuit diagram](https://via.placeholder.com/150)

\[
G = \frac{1}{RC} \quad \Rightarrow \quad \frac{1}{C} \quad \Rightarrow \quad \frac{1}{R}
\]

\[t < 0, \quad V_{\text{in}} = 0V \]

\[t \geq 0, \quad V_{\text{in}} = V_{\text{dd}} \]

KCL: \[I_1 + I_2 + I_3 = 0 \]

Elements:
- \[V_1 = I_1 \cdot R_{\text{on,m1}} \]
- \[I_2 = C_{\text{gn2}} \frac{dV_2}{dt} \]
- \[I_3 = C_{\text{gp2}} \frac{dV_3}{dt} \]

Voltages:
- \[V_1 = V_X \]
- \[V_2 = V_X \]
- \[V_3 = V_X - V_{\text{dd}} \]
Sub. into KCL:

\[
\frac{V_1}{R_{on,m1}} + C_{m2} \frac{dV_1}{dt} + C_{p2} \frac{dV_3}{dt} = 0
\]

\[
\frac{V_x}{R_{on,m1}} + C_{m2} \frac{dV_x}{dt} + C_{p2} \frac{d}{dt}(V_x - V_{dd}) = 0
\]

\[
\frac{V_x}{R_{on,m1}} + C_{m2} \frac{dV_x}{dt} + C_{p2} \frac{d}{dt} V_x = 0
\]

\[
\frac{V_x}{R_{on,m1}} + ((C_{m2} + C_{p2}) \frac{d}{dt} V_x = 0
\]

\[
\frac{d}{dt} V_x(t) = -\frac{V_x}{R_{on,m1} \cdot (C_{m2} + C_{p2})}
\]

\[
T = R_{on,m1} \cdot (C_{m2} + C_{p2})
\]

determines the speed of transition.

Already have a solution for this:

\[
t > 0: \quad V_x(t) = V_x(0) e^{-\frac{t}{T}}
\]

\[
V_x(0) = V_{dd} \Rightarrow V_x(t) = V_{dd} e^{-\frac{t}{T}}
\]