
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2022
Midterm Redo

The midterm redo is due on Monday, March 28, 2022, at 11:59PM.

1



EECS 16B Midterm Redo 2022-03-17 13:17:43-07:00

1. Complex Numbers

You are given the graph in Figure 1.

In this problem, you may use the atan2(b, a) function to compute the angle (phase) for the complex
number a + jb as necessary.
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Figure 1: Vectors in the x − y plane

(a) What are the Cartesian ((x, y)) and Polar (rejθ) coordinates of v⃗?
Guidance:

• Use the definition of Cartesian and polar coordinates from Note j.
• First try to find the Cartesian form, then convert that into polar using the formulas in the

note.

(b) What are the Cartesian ((x, y)) and Polar (rejθ) coordinates of w⃗?
Guidance:

• Use the definition of Cartesian and polar coordinates from Note j.
• First try to find the Cartesian form, then convert that into polar using the formulas in the

note.
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2. PMOS Transistor Inverter

Consider the following schematic and PMOS model.
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(a) A PMOS transistor circuit
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(b) Resistor and switch model for PMOS transistor.

Figure 2: PMOS figures.

Please plot the output Vout for the input Vin ranging from 0 V to 1 V. Justify your answer.

NOTE: The y-axis ticks starts from −0.2 V.
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Guidance:

• First, substitute the transistor in the left figure with its switch model in the right figure.

• Use this to identify the value of VGS at which the behavior of the circuit changes.

• Convert this value of VGS into what the value of Vin is to produce this value of VGS.

• Look at what happens when you take Vin higher and lower than this special value.

• Extrapolate to all Vin using the fact that Vout (as a function of Vin) is piecewise constant, with the
two "pieces" being when Vin is before and after this special value.
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3. Filter Circuits

(a) Below, you have filter circuits A, B, C, D, each with specific component values. Fill in the bub-
bles to match each filter to its corresponding magnitude transfer function plot out of choices
I, II, III, IV. Note that each plot may be assigned to filters once, more than once, or not at all.
Each filter has exactly one corresponding plot.
SI Prefixes and Exponent definitions: nano (n): 10−9; micro (µ): 10−6; milli (m): 10−3; kilo (k):
103; mega (M): 106; giga (G): 109
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(III) Plot III.
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(IV) Plot IV.

Filter Letter Plot I Plot II Plot III Plot IV

A ⃝ ⃝ ⃝ ⃝
B ⃝ ⃝ ⃝ ⃝
C ⃝ ⃝ ⃝ ⃝
D ⃝ ⃝ ⃝ ⃝
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Guidance: For each circuit:
• Look at whether the circuit is LC or RC.
• Decide the "important" frequencies (for LC this is resonance, for RC this is cutoff frequency).
• For LC, what happens during resonance?
• If you still need to pick between two choices, find the transfer function and take limits ω → 0

and ω → ∞ to look at long-term behavior of the circuit (low-pass? at what gain? etc.)

(b) Now, in order to design a band-pass filter, one possible way is to cascade two filters above.
Below, you have filter circuits A, B, C, each with specific component values. Fill in the bubbles
to match each filter to its corresponding magnitude transfer function plot out of choices I, II,
III.
Note that each plot may be assigned to filters once, more than once, or not at all. Each filter has
exactly one corresponding plot.
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III Plot III.

Filter Letter Plot I Plot II Plot III

A ⃝ ⃝ ⃝
B ⃝ ⃝ ⃝
C ⃝ ⃝ ⃝

Guidance: For each circuit:
• Find the transfer function. Recall how to find the transfer function of composed filters, which

is just multiply the transfer functions of the component filters.
• Take limits ω → 0 and ω → ∞ of the transfer function to see the limiting magnitudes.
• If still picking between choices, note that RLC will have sharp peaks in the transfer function

due to resonance effects, but RC and CR filters composed will never have resonance and so
their transfer functions are smooth.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5



EECS 16B Midterm Redo 2022-03-17 13:17:43-07:00

4. Magnitude, Phase, and Cascades

Suppose you have the transfer function H(jω) for a system as given in eq. (1) below:

H(jω) =
20

1 + j ω
ω0

(1)

where ω0 := 1 × 107 rad
s .

Answer the following questions.

(a) What is the transfer function’s magnitude |H(jω)| at ω = 0 rad
s ?

Guidance:

• Compute the magnitude of the transfer function. Note that
∣∣ a

b

∣∣ = |a|
|b| .

• Plug in ω = 0 and evaluate.

(b) What is the transfer function’s magnitude |H(jω)| at ω = ∞ rad
s ?

Guidance:

• Compute the magnitude of the transfer function if you don’t have it already.
• Take the limit ω → ∞ of the magnitude of the transfer function.

(c) What is the transfer function’s phase ∡H(jω) at ω = 1 × 107 rad
s ?

Guidance:

• Compute the phase of the transfer function. Note that ∡ a
b = ∡a −∡b.

• Plug in ω = 1 × 107 rad
s and evaluate.

(d) You cascade the systems S1 as defined by the transfer function:

H1(jω) =
20

1 + j ω
ω1

(2)

with another system S2 as defined by the transfer function:

H2(jω) =
100

1 + j ω
ω2

. (3)

where ω1 := 1 × 107 rad
s and ω2 := 1 × 104 rad

s .
You place S2 after S1, with unity-gain buffers in between. Write the overall transfer function
Hcascade(jω) in terms of jω. You do not need to simplify your answer for this subpart.
Guidance:

• Recall that the overall transfer function of a composed system is the product of the compo-
nent transfer functions.
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5. Stability of Discrete-Time System

Suppose we are working with a linear model which has the form:[
x1[i + 1]
x2[i + 1]

]
︸ ︷︷ ︸

x⃗[i+1]

=

[
0 1
k 1

]
︸ ︷︷ ︸

Ad

[
x1[i]
x2[i]

]
︸ ︷︷ ︸

x⃗[i]

+

[
0
1

]
w[i], (4)

where k ∈ R is an unknown variable.

(a) Give the range of k, such that the matrix Ad has only real eigenvalues. Justify your answer.
Guidance:

• Compute the characteristic polynomial of Ad. You should get a quadratic function.
• Find the eigenvalues of the characteristic polynomial symbolically. You should get a pair of

eigenvalues. A square root of a simple function of k, say
√

f (k), will be involved.
• Find the range of k such that the the function of k, i.e., f (k), is non-negative.

(b) Choose the possible k value(s) from the following options such that the above model is stable.
Select all choices that apply.

i. k = − 3
4 .

ii. k = 1.
iii. k = − 1

4 .

iv. k = 1
4 .

Guidance:

• Recall that the condition for discrete-time stability is that all eigenvalues have magnitude
< 1.

• Using the eigenvalues polynomial you computed in the last part, plug in the different values
of k that are given, and find the magnitudes of both eigenvalues for this k; then you can check
their magnitudes.
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6. Controllability and Eigenvalue Placement

Suppose we are working with a linear model with two-dimensional state x⃗ : N → R2 but one-
dimensional input u : N → R: [

x1[i + 1]
x2[i + 1]

]
︸ ︷︷ ︸

=x⃗[i+1]

=

[
1 0
0 1

]
︸ ︷︷ ︸

=A

[
x1[i]
x2[i]

]
︸ ︷︷ ︸
=x⃗[i]

+

[
b1
b2

]
︸︷︷︸
=⃗b

u[i] (5)

where b1 ̸= 0 and b2 ̸= 0.

(a) Show that the model in Equation (5) is not controllable.
Guidance:

• Recall the definition of the controllability matrix: C =
[

A⃗b b⃗
]
.

• Note that A = I2 the identity matrix. Simplify the controllability matrix using this.
• Finish off by applying the definition of controllability.

(b) Suppose we add feedback control of the form

u[i] :=
[

f1 f2
]︸ ︷︷ ︸

= f⃗⊤

[
x1[i]
x2[i]

]
︸ ︷︷ ︸
=x⃗[i]

. (6)

Show that one of the eigenvalues of ACL := A + b⃗ f⃗⊤ is 1, regardless of the values of f1 and
f2.
Guidance:

• Write out all entries of ACL − λI in terms of entries of A, b⃗, f⃗ , λ.
• Compute determinant of ACL − λI (characteristic polynomial of ACL)
• Plug in λ = 1 and show the determinant of ACL − λI is 0. This means 0 is an eigenvalue of

ACL.
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7. Brain Stimulation

For his neuron-modeling project Krishna thought of consulting his close friend Radhika, who is a
neuroscientist. According to Radhika’s suggestions, Krishna came up with the following model of
the cell-membrane of a neuron:

Figure 7: Electrical model of the neuron membrane

(a) Now Krishna wants to see how the neuron behaves to an external current stimulus. As he found
the complete model very difficult to analyze, he starts his analysis with the following simple
model:

Iext(t) R

IR

IC

C

+

−

Vmem(t)

Figure 8: Simplified circuit model of a neuron membrane with an external current stimulus.

For all parts of this problem the external stimulus Iext(t) is a piece-wise constant function as
shown below:
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I e
xt
(t
)

t0

0

Ie

i. Find the value of Vmem(0) assuming the system reached steady-state for t < 0.
Guidance: Note that Iext(t) = 0 for t < 0. What are steady-state values for this configuration
(i.e., t < 0)?

ii. Solve for Vmem(t) where t ≥ 0. Show your work.
Guidance:

• Start off with KCL.
• Use I-V relationships to get differential equation for d

dt Vmem(t) in terms of Vmem(t) and
some constants.

• Plug in Iext(t) = Ie if you haven’t done that already.
• Solve the scalar differential equation using the initial condition from part (a). You can

use i.e., Note 2 Section 4.5, as a help.

iii. Qualitatively sketch Vmem(t) on the below plot, and label the steady-state value by filling
in the un-filled y-axis label.

V m
em

(t
)

t0

Vmem(0)

Guidance:
• Until time t = 0, what is Vmem(t)? (Recall that we are in steady-state before t = 0).
• For t ≥ 0, plot Vmem(t) using our expression from the previous part.

(b) As a part of his project, Krishna needs to measure the neural potentials. However, in the mea-
surement process multiple neurons can come into contact. He came up with the following circuit
modeling two neuron membranes in contact with each other.
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Iext(t)

I1

R1 C1

+

−

V1

R3

I2

R2 C2

+

−

V2

Figure 9: Simplified circuit model for two neuron membranes in contact.

By doing nodal analysis of the circuit, he found that the membrane voltages V1(t) and V2(t)
are related to the external current stimulus (Iext(t)) through the following vector differential
equation:

d
dt

[
V1(t)
V2(t)

]
=

[
a 1

R3C1
1

R3C2
− 1

(R2||R3)C2

] [
V1(t)
V2(t)

]
+

[
b
0

]
Iext(t) (7)

where Ri||Rj =
Ri Rj

Ri+Rj
. Find expressions for a and b in terms of R1, R2, R3, C1 and C2.

Guidance:

• Apply KCL and I-V relationships to get a system for d
dt V1(t) and d

dt V2(t) in terms of I1(t), I2(t), V1(t), V2(t),
and some constants.

• Use Ohm’s law on I2 to write it in terms of V1(t), V2(t), and some constants.
• Use KCL to find a relation between I1(t), I2(t), and Iext(t).
• Use the previous two relations to write I1(t) in terms of Iext(t), V1(t), V2(t), and some con-

stants.
• Plug these expressions for I1(t), I2(t) into our original system we found using KCL.
• Simplify.

(c) Suppose for some appropriate component values, the vector differential equation 7 can be writ-
ten in the following form

d
dt

x⃗(t) =
[
−30 10
10 −30

]
x⃗(t) +

[
103

0

]
u(t) (8)

where x⃗(t) =
[

x1(t)
x2(t)

]
=

[
V1(t)
V2(t)

]
and u(t) = Iext(t). The external current source, Iext(t) is same

as in part (a) with Ie = 10 mA. Plugging the value of Iext(t), for t > 0 eq. 8 becomes

d
dt

x⃗(t) =
[
−30 10
10 −30

]
x⃗(t) +

[
10
0

]
(9)

Let’s say the two eigenvalues of
[
−30 10
10 −30

]
are λ1, λ2 and the corresponding eigenvectors are

v⃗1, v⃗2 respectively. Let’s also define V =
[⃗
v1 v⃗2

]
. It’s given to you that λ1 = −40, v⃗1 =

[
1
−1

]
and v⃗2 =

[
1
1

]
. You can also consider V−1 = 1

2

[
1 −1
1 1

]
.
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i. Find the value of λ2.
Guidance:

• Since you already know v⃗2, compute Av⃗2 (for A =

[
−30 10
10 −30

]
).

• Identify λ2 such that Av⃗2 = λ2v⃗2.

ii. Let’s define ⃗̃x(t) such that x⃗(t) = V⃗̃x(t). Determine ⃗̃x(0). You can assume the initial condi-
tion of the circuit to be x⃗(0) = 0⃗.

Guidance: We already know x⃗(0) =
[

0
0

]
. What is V−1 x⃗(0)?

iii. Now diagonalize the system given by eq. 9 and solve for ⃗̃x(t) for t ≥ 0.
Guidance:

• Write the original system in ⃗̃x coordinates. See Note 3 if this is giving you trouble.
• Once in diagonalized coordinates, solve each row of the diagonal system for x̃k(t).

iv. Use the result in the previous part to find x⃗(t) for t ≥ 0.
Guidance: We have the system solved in the diagonalized coordinates, so it just remains to
do a change-of-basis into the regular coordinates (basically multiplying by V).
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8. Active Filter
NOTE: This problem doesn’t use any result from the previous problem on brain stimulation.
Krishna wants to measure the membrane potential of the neuron to characterize the neuron behavior
as a part of his neural-modeling project. However, he knows that to accurately measure the neuron
membrane potential, he needs to cancel out any external interference which may corrupt the neural
signals. To do that he designed the following active filter:

−

+Vin

L R1
−

+

R2

Vout

Figure 10: Schematic of the active filter used to cancel unwanted interference to the neuron membrane potential

(a) Assume the op-amps used in the filter are ideal. Which of the following best describes the type
of this filter?

Filter type Select one
2nd-order low-pass filter ⃝
1st-order low-pass filter ⃝

High-pass filter ⃝
Band-pass filter ⃝

Guidance:
• It is probably easiest to find the transfer function.
• Note that the right-hand side of the circuit looks like an inverting amplifier.
• Working in frequency domain with impedances, all the op-amp configurations still work

(e.g. inverting amplifier), but with impedances and voltage phasors instead of resistances
and voltages.

• Inductor’s and resistor’s impedances are in series, so find their equivalent impedance by
adding them.

• Then we exactly get an inverting amplifier in phasor domain.
• To find the transfer function, we can just use our knowledge of inverting amplifier to con-

clude that it’s negative of the impedance ratio.

(b) Derive the transfer function of the filter.
Guidance: Same hints as above.

(c) Assuming R2 = 10 × R1, find the magnitude of the transfer function of the filter at ω = 0 (i.e.
|H(j · 0)|).
Guidance: Plug in ω = 0 into the transfer function you found, and evaluate.

(d) Now assume the frequency of the neural signal, ωs can be in the range of 0 Hz to 100 Hz and
the interference signal frequency, ωint is 60 kHz. The filter cut-off frequency, ωc needs to be
positioned so that the interference is attenuated by at least a factor of 100 compared to |H(j · 0)|
(i.e. |H(jωint)| ≤ |H(j·0)|

100 ) and the neural signal doesn’t see any attenuation compared to |H(j · 0)|
(i.e. |H(jωs)| ≈ |H(j · 0)|). Which of the following is an acceptable range of cut-off frequencies
(ωc) for the active filter that Krishna designed? Justify your answer.

Frequency range Select one
50 Hz - 60 Hz ⃝

500 Hz - 600 Hz ⃝
5 kHz - 6 kHz ⃝

50 kHz - 60 kHz ⃝

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13
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Guidance:

• We want to preserve 0 Hz to 100 Hz while rejecting 60 kHz, attenuating it by a factor of 100.
• This means that the cutoff frequency should be 100 times lower than 60 kHz.

(e) Suppose you have R1 = 10 Ω, R2 = 100 Ω and L = 10 mH. Draw the Bode plot (straight-line
approximations to the transfer function) for the magnitude and phase of the active filter.
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Guidance: Refer to Note 8 for a how-to on making Bode plots you know the transfer function of.
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9. Affine Control

In this problem, we will analyze a affine model of the form

x[i + 1] = αx[i] + βu[i] + γ (10)

where α, β, γ ∈ R, x : N → R is the state, and u : N → R is the input. Affine models are ubiquitous
in control theory – in fact, our robot car from lab obeys a two-state-variable affine model.

(a) Suppose (for this part only) that:

• α = 1, • β = 0, • γ ̸= 0, • x[0] is anything.

so the model is of the form
x[i + 1] = x[i] + γ. (11)

Is the state x bounded? Justify your answer.
Guidance:

• Write out the first few terms x[0], x[1], x[2], . . ..
• Try to find a general formula for x[i].
• Take the limit as i → ∞.

(b) Suppose (for this part only) that the state evolves according to Equation (10), i.e.,

x[i + 1] = αx[i] + βu[i] + γ (12)

and

• α ̸= 0, • β > 0, • γ ̸= 0, • x[0] = 0.

Suppose that we supply feedback control of the form

u[i] = f · x[i] (13)

for f ∈ R.

i. For the specific case of f = −1−α
β , show that the state x is bounded.

Guidance:
• Write out the first few terms x[0], x[1], x[2], . . ..
• Try to find a general formula for x[i].
• Find an upper bound for |x[i]|.

ii. In terms of α and β, give a range of f that keeps the state x bounded.
Guidance:

• Use the stability criteria |λ| < 1 to produce two inequalities for α + β f .
• Notice that α + β f = −1 is allowed (in this case) by (i) (why? show this if you don’t feel

comfortable with it).
• Notice that λ = α + β f = 1 is not allowed (in this case) by part (a) (again, why? show

this if you don’t feel comfortable with it).
• Modify your inequalities for α + β f accordingly.
• Turn those inequalities into a range for f .

(c) Suppose (for this part only) that the state evolves according to Equation (10), i.e.,

x[i + 1] = αx[i] + βu[i] + γ (14)

and

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 15
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• α is anything, • β is anything, • γ is anything, • x[0] is anything.

Suppose that we are setting up a least-squares system identification procedure to learn α, β,
and γ, and that we have data of the form (x[i], u[i], x[i + 1]), for i ∈ {0, 1, . . . , ℓ− 1}. Set up a
least-squares problem Dp⃗ ≈ s⃗ to learn estimates for α, β, γ. What are D, p⃗, and s⃗?
NOTE: Your answer for D should be as compact as possible.
NOTE: You do not need to solve the least squares problem; just set it up.
Guidance: Follow the method in Note 10, except you will need to add a column of 1s to account
for γ.

(d) Suppose (for this part only) that the state evolves according to Equation (10), i.e.,

x[i + 1] = αx[i] + βu[i] + γ (15)

and

• α > 1, • β > 0, • γ > 0, • x[0] is anything.

Suppose that we actually got our discrete-time model

x[i + 1] = αx[i] + βu[i] + γ (16)

by discretizing a continuous-time model

d
dt

x(t) = ax(t) + bu(t) + c (17)

where the sampling interval length is ∆ = 1, i.e., x[i] = x(i∆), and u(t) is piecewise constant
over intervals of length ∆, i.e., u(t) = u(i∆) = u[i] for t ∈ [i∆, (i + 1)∆). In terms of α, β, γ, what
are a, b, and c?
(HINT: You can use any discretization formulas we derived in class, as long as they apply. Alternatively,
you may use the following formula in your derivation.
For a constant input v, and a time t0 for which x(t0) is known, the solution to the differential equation

d
dt

x(t) = ax(t) + v t ≥ t0 (18)

is given by

x(t) = ea(t−t0)x(t0) +
ea(t−t0) − 1

a
· v, t ≥ t0. (19)

when a ̸= 0. Also, recall from the problem statement above that the sampling interval length ∆ = 1.)
Guidance:

• Define v(t) = bu(t) + c, so that v[i] = bu[i] + c. (This makes your affine system into a
linear system, just with a different input). Note that since u is piecewise constant, v is also
piecewise constant.

• Get an expression for x[i + 1] in terms of x[i]. There are two ways you can go about this:
– Use the hint and plug in t0 = i∆, t = (i + 1)∆ since we want to find values at (i + 1)∆

given the values at i∆, and then v = v[i] (which works since v is piecewise constant).
– Read off the discretization coefficients from Note 10.

• Read off α, β, γ as the coefficient of x[i], the coefficient of u[i], and the constant term, respec-
tively, in the expression for x[i + 1] given x[i].

• Solve for a, b, c from α, β, γ. Solve for a first and use this to simplify the other expressions.
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