1. Linear Approximation

A common way to approximate a nonlinear function is to perform linearization near a point. In the case of a one-dimensional function \(f(x) \), the linear approximation of \(f(x) \) at a point \(x_\star \) is given by

\[
\tilde{f}(x; x_\star) = f(x_\star) + f'(x_\star) \cdot (x - x_\star),
\]

(1)

where \(f'(x_\star) := \frac{df}{dx}(x_\star) \) is the derivative of \(f(x) \) at \(x = x_\star \).

Keep in mind that wherever we see \(x_\star \), this denotes a constant value or operating point.

We can evaluate the accuracy of our approximation by calculating the approximation error, namely \(|f(x) - \tilde{f}(x; x_\star)| \).

Suppose we have the single-variable function \(f(x) = x^3 - 3x^2 \). We can plot the function \(f(x) \) as follows:

![Plot of \(f(x) = x^3 - 3x^2 \)](image)

(a) Write the linear approximation of the function around an arbitrary point \(x_\star \).
(b) Using the expression above, linearize the function around the point \(x_\star = 1.5 \). Draw the linearization into the plot in fig. 1. Then evaluate the accuracy of the linear approximation at \(x = 1.7 \) and \(x = 2.5 \). Does the difference in accuracy make sense, based on the plot?

Now, we can extend this to higher dimensional functions. In the case of a two-dimensional function \(f(x, y) \), the linear approximation of \(f(x, y) \) at a point \((x_\star, y_\star)\) is given by

\[
\tilde{f}(x, y; x_\star, y_\star) = f(x_\star, y_\star) + \frac{\partial f}{\partial x}(x_\star, y_\star) \cdot (x - x_\star) + \frac{\partial f}{\partial y}(x_\star, y_\star) \cdot (y - y_\star).
\]

(2)

where \(\frac{\partial f}{\partial x}(x_\star, y_\star) \) is the partial derivative of \(f(x, y) \) with respect to \(x \) at the point \((x_\star, y_\star)\), and similarly for \(\frac{\partial f}{\partial y}(x_\star, y_\star) \).

(c) Now, let’s see how we can find partial derivatives. When we are given a function \(f(x, y) \), we calculate the partial derivative of \(f \) with respect to \(x \) by fixing \(y \) and taking the derivative with respect to \(x \). Given the function \(f(x, y) = x^2y \), find the partial derivatives \(\frac{\partial f(x, y)}{\partial x} \) and \(\frac{\partial f(x, y)}{\partial y} \).

(d) Write out the linear approximation of \(f \) near \((x_\star, y_\star)\).

(e) We want to see if the approximation arising from linearization of this function is reasonable for a point close to our point of evaluation. Suppose we want to evaluate the accuracy of our approximation at some point \((x_\star + \delta, y_\star + \delta)\), where \(x_\star = 2 \) and \(y_\star = 3 \). Find the accuracy of this approximation in terms of \(\delta \). What if \(\delta = 0.01 \)?
(f) Suppose we have now a scalar-valued function \(f(\vec{x}, \vec{y}) \), which takes in vector-valued arguments \(\vec{x} \in \mathbb{R}^n, \vec{y} \in \mathbb{R}^k \) and outputs a scalar \(\in \mathbb{R} \). That is, \(f(\vec{x}, \vec{y}) \) is \(\mathbb{R}^n \times \mathbb{R}^k \to \mathbb{R} \).

One way to linearize the function \(f \) is to do it for every single element in \(\vec{x} = [x_1 \ x_2 \ \ldots \ x_n]^\top \) and \(\vec{y} = [y_1 \ y_2 \ \ldots \ y_k]^\top \). Then, when we are looking at \(x_i \) or \(y_j \), we fix everything else as constant. This would give us the linear approximation
\[
f(\vec{x}, \vec{y}) \approx f(\vec{x}_\star, \vec{y}_\star) + \sum_{i=1}^{n} \frac{\partial f(\vec{x}, \vec{y})}{\partial x_i} \bigg|_{(\vec{x}_\star, \vec{y}_\star)} (x_i - x_i) + \sum_{j=1}^{k} \frac{\partial f(\vec{x}, \vec{y})}{\partial y_j} \bigg|_{(\vec{x}_\star, \vec{y}_\star)} (y_j - y_j) \quad \text{(3)}
\]

In order to simplify this equation, we can define the following two vector quantities:
\[
J_{\vec{x}f} = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}
\]
\[
J_{\vec{y}f} = \begin{bmatrix} \frac{\partial f}{\partial y_1} & \cdots & \frac{\partial f}{\partial y_k} \end{bmatrix}
\]

First, how can we “vectorize” eq. (3) using \(J_{\vec{x}f} \) and \(J_{\vec{y}f} \)? Next, assume that \(n = k \) and we define the function \(f(\vec{x}, \vec{y}) = \vec{x}^\top \vec{y} = \sum_{i=1}^{k} x_i y_i \). Find \(J_{\vec{x}f} \) and \(J_{\vec{y}f} \) for this specific \(f \).

(HINT: For vectorizing, think about replacing the summations as the multiplication of a row and column vector. What would these vectors be?)

(g) Following the above part, find the linear approximation of \(f(\vec{x}, \vec{y}) \) near \(\vec{x}_\star = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(\vec{y}_\star = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \). Recall that \(f(\vec{x}, \vec{y}) = \vec{x}^\top \vec{y} = \sum_{i=1}^{k} x_i y_i \).
These linearizations are important for us because we can do many easy computations using linear functions.

Contributors:

- Neelesh Ramachandran.
- Kuan-Yun Lee.