
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2023
Discussion 2B

This discussion relies on material covered in lecture on inductors (08/31) and transistors (09/05) as well
as the corresponding notes, Note 3 and Note 4 respectively.

1. RL Circuit Solution Methods

Consider the following circuit:

−
+Vs = 3 V

t = 0 R1 = 30 Ω

R2 = 30 Ω

R3 = 30 Ω

L = 3 H

iL(t)

Figure 1

Before time t = 0, the circuit reaches a steady state. At time t = 0, the switch is closed. Our goal is to
find the differential equation for the current through the inductor (iL(t)). One method to approach this
problem is to simply use Node Voltage Analysis (NVA). To start, we would define the node voltages
in our circuit (including a ground node).

−
+Vs = 3 V

R1 = 30 Ω i1
V1

R2 = 30 Ω

i2

R3 = 30 Ω i3
V2

L = 3 H

iL(t)

Figure 2

Then, we can set up a system of equations using KCL/KVL to find our desired differential equation.

First, let’s perform KCL on the node with defined voltage V1.

i1 = i2 + i3
Vs − V1

R1
=

V1 − 0
R2

+
V1 − V2

R3
3 − V1

30
=

V1 − 0
30

+
V1 − V2

30

V1 = 1 +
V2

3

1
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Now, let’s perform KCL on the node with the defined voltage V2.

Note that V2 − 0 = V2 is the voltage across the inductor so by the inductor I-V relationship, V2 =

L diL
dt = 3 diL

dt .

i3 = iL

V1 − V2

R3
= iL

V1 − V2

30
= iL

V1

30
=

V2

30
+ iL

1
30

(
1 +

V2

3

)
=

V2

30
+ iL

1
45

V2 + iL =
1
30

1
45

(
3

diL
dt

)
+ iL =

1
30

diL
dt

+ 15iL =
1
2

Thus, we have found the differential equation! However, this method required solving a system of
equations; is there another way?

(a) Another way to approach the problem is to use equivalence. Simplify the voltage source and
resistor network into a voltage source and resistor using Thevenin equivalence. Then, reconnect
the inductor and find the differential equation for iL(t).

For reference, here is the circuit that we want to simplify using Thevenin equivalence:

−
+Vs = 3 V

R1 = 30 Ω

R2 = 30 Ω

R3 = 30 Ω

Figure 3

(HINT: Your final differential equation should be the same as the one from the problem introduction.)

Solution: There are many approaches for finding the Thevenin equivalent circuit. Let’s find the
voltage VTH when the terminals are open and the equivalent resistance RTH looking into the
terminals.

To find the voltage VTH , we can notice that no current flows through resistor R3 due to the open
circuit. Thus, the voltage at the terminals is the same as the voltage of the node in between all of
the resistors, if we define the bottom node to be ground. Then, since the current through R1 and
R2 must be the same by KCL, VTH will just be the result of a voltage divider between those two
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resistors.

VTH =
R2

R1 + R2
Vs =

30
30 + 30

(3) =
3
2

To find the equivalent resistance looking into the terminals, we zero out the independent volt-
age source (which becomes a short circuit) and find the equivalent resistance of the remaining
resistors:

R1 = 30 Ω

R2 = 30 Ω

R3 = 30 Ω

Figure 4

Using parallel/series resistance knowledge, we can find that

RTH = R1||R2 + R3 = 30||30 + 30 = 15 + 30 = 45

Thus, our Thevenin equivalent circuit is:

−
+VTH = 1.5 V

RTH = 45 Ω

Figure 5

Now, let’s add our inductor back into the circuit:

−
+VTH = 1.5 V

RTH = 45 Ω

L = 3 H

iL(t)

Figure 6
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This is a much simpler circuit to analyze! Let’s define the voltage across the inductor to be vL

and perform KCL to find the differential equation:

VTH − vL
RTH

= iL

1.5 − vL
45

= iL

vL
45

+ iL =
3
2

1
45

(
3

diL
dt

)
+ iL =

1
30

1
15

diL
dt

+ iL =
1
30

diL
dt

+ 15iL =
1
2

Notice that this is the same differential equation as obtained using Node Voltage Analysis (NVA)!

(b) Now, let’s start solving the differential equation. First, find the initial condition iL(0) for our
system. Remember that the current through the inductor cannot change instantaneously (since
this would correspond to infinite voltage through the inductor I-V relationship) so iL(0) will be
the same as the steady state value from t < 0.

(HINT: If there is no voltage/current sources connected to this system, can there be any nonzero currents
/ voltage differences in the system during steady-state?)

Solution: Since no voltage/current sources are connected for t < 0 when the switch is open, the
current in steady state will be iL(0) = 0.

(c) (OPTIONAL) Now that we have our differential equation and initial condition, we can now
solve for the current iL(t) as a function of time. Solve the system for iL(t). If you can, try
to solve this by inspection. Otherwise, solve using the homogeneous and particular solution
method.

Solution:

Method 1: Inspection

We know that when the switch closes, the voltage source becomes connected to the system and
after a long time, iL will reach some steady state value. In steady state, an inductor behaves as a
short circuit so if we replace the inductor with a short circuit, we can find the steady state current
through it. In doing so, we can visualize the following circuit:

−
+VTH = 1.5 V

RTH = 45 Ω

iL(t)

Figure 7
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The current in this case would simply be limt→∞ iL(t) =
VTH
RTH

= 1.5
45 = 1

30 .

From our differential equation, we can recognize that our time constant is τ = L
RTH

= 1
15 . Ad-

ditionally, we know that iL goes from iL(0) = 0 to limt→∞ iL(t) = 1
30 exponentially, so the term

that describes this transistion is 1 − e−
t
τ = 1 − e−15t.

Combining our ideas, we can determine that iL(t) = 1
30 (1 − e−15t).

Method 2: Homogeneous and Particular Solutions

Notice that our differential equation has an input term (not homogeneous). Thus, we will need
to find both a homogeneous solution and particular solution.

Let ih(t) be a homogeneous solution to our equation. To find ih(t), set the input term in our
differential equation to 0:

dih
dt

+ 15ih = 0 (1)

dih
dt

= −15ih (2)

Notice that this differential equation is the same form as that of RC circuits! If we let λ = −15,
our solution will be identical:

ih(t) = A1eλt = A1e−15t

We can also notice that the time constant in this case will be τ = L
RTH

= 1
15 .

Now, let’s find a particular solution. For this, we will use the concept of DC steady state (as
t → ∞). In DC steady state, an inductor behaves as a short circuit (please refer to the notes and
lectures for explanations as to why), so the simplified circuit from out previous example will
look as follows in DC steady state:

−
+VTH = 1.5 V

RTH = 45 Ω

iL(t)

Figure 8

With use of Ohm’s law, we can determine that the current through the inductor (represented by
the short circuit in this DC steady state scenario) will be:

ip(t) =
1.5
45

=
1

30
(3)

Now, we can combine the two solutions to get our overall solution.

iL(t) = ih(t) + ip(t)

= A1e−15t +
1
30

− 1
30

e−15t
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=

(
A1 −

1
30

)
e−15t +

1
30

= Ae−15t +
1
30

We have defined A = A1 − 1
30 , which is simply another version of the same arbitrary constant

that accounts for the initial condition of our differential equation that we found in the previous
part of the problem.

Now, we use our initial condition to solve for A.

iL(0) = Ae−15(0) +
1
30

= 0

A = − 1
30

Thus, our final solution is

iL(t) = − 1
30

e−15t +
1

30
=

1
30

(
1 − e−15t

)

© UCB EECS 16B, Fall 2023. All Rights Reserved. This may not be publicly shared without explicit permission. 6



EECS 16B Discussion 2B 2023-09-06 22:43:41-07:00

2. Transistor Switch Model

We can improve our resistor-switch model of the transistor by adding in a gate capacitance. In this
model, the gate capacitances CGN and CGP represent the lumped physical capacitance present on
the gate node of all transistor devices. This capacitance is important as it determines the delay of a
transistor logic chain.

S

VGS ≥ Vtn

Ron, N

ID

D

CGN

G

Vout

(a) NMOS Transistor Resistor-switch-capacitor
model

D

VGS ≤ −|Vtp|

Ron, P

ID

S

CGP

G

Vout

(b) PMOS Transistor Resistor-switch-capacitor
model. Note we have drawn this so that it aligns
with the inverter.

You have two CMOS inverters made from NMOS and PMOS devices. Both NMOS and PMOS devices
have an “on resistance” of Ron, N = Ron, P = 1 kΩ, and each has a gate capacitance (input capacitance)
of CGN = CGP = 1 fF (fF = femto-Farads = 1 × 10−15 F). We assume the “off resistance” (the resistance
when the transistor is off) is infinite (i.e., the transistor acts as an open circuit when off). The supply
voltage VDD is 1V. Assume VDD > Vtn, |Vtp| > 0. The two inverters are connected in series, with the
output of the first inverter driving the input of the second inverter (Figure 10).

Vin

Vout, 1

VDD

Vin, 2

Vout, 2

VDD

Figure 10: CMOS Inverter chain

(a) Assume the input to the first inverter has been low (Vin = 0 V) for a long time, and then switches
at time t = 0 to high (Vin = VDD).

Draw a simple RC circuit and write a differential equation describing the output voltage of
the first inverter (Vout, 1) for time t ≥ 0.

Don’t forget that the second inverter is “loading” the output of the first inverter — you need to
think about both of them.

(HINT: Your simple RC circuit model will only have 3 elements; you only need to draw the elements that
impact the behavior of Vout, 1 and thus are relevant in this specific scenario. Also, for the first inverter,
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when Vin = VDD, the NMOS transistor model’s switch will be closed while the PMOS transistor model’s
switch will be open.)

Solution: To analyze this circuit as an RC circuit we can recall the transistor switch model. Using
this we can see that the first inverter’s output appears as a resistor connected to ground when
the input turns high (Vin = VDD) since only the switch for the NMOS transistor is closed.

The second inverter “loads” the output of the first inverter. From the notes in the problem, we
can model the gates of the transistors as capacitors. These gates together form our capacitive
load. The gate of the PMOS acts as a capacitor to VDD and the gate of the NMOS acts as a
capacitor to ground.

Using this we can draw the following RC circuit:

VDD

CGP

ICGP

Vout, 1

CGN

ICGN

Ron, N

IRon, N

Figure 11: First inverter output at 0

We know the voltage across CGP is Vout, 1(t)−VDD and the voltage across CGN is Vout, 1(t). Using
this information we can set up a differential equation to solve for Vout(t).

Writing the expressions for the three branch currents yields:

ICGP = CGP
d
dt

(Vout, 1(t)− VDD) (4)

ICGN = CGN
d
dt

Vout, 1(t) (5)

IRon, N =
Vout, 1(t)

Ron, N
(6)

Writing KCL at the single node yields:

ICGP + ICGN + IRon, N = 0 (7)

in other words:

ICGP + ICGN = −IRon, N (8)
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Expanding the branch currents with their expressions:

CGP
d
dt

(Vout, 1(t)− VDD) + CGN
d
dt

Vout, 1(t) = −Vout, 1(t)
Ron, N

(9)

CGP
d
dt

Vout, 1(t) + CGN
d
dt

Vout, 1(t) = −Vout, 1(t)
Ron, N

(10)

(CGP + CGN)
d
dt

Vout, 1(t) = −Vout, 1(t)
Ron, N

(11)

Re-writing as a first-order differential equation for Vout, 1 yields:

d
dt

Vout, 1(t) +
Vout, 1(t)

Ron, N(CGP + CGN)
= 0 (12)

(b) Solve for Vout, 1(t). The initial condition will be Vout,1(0) = VDD (this can be found by using the
situation described in part (a)).

Solution: From our differential equation, we can notice that it is in the form

d
dt

Vout, 1(t) +
1
τ

Vout, 1(t) = 0 (13)

where τ = Ron, N(CGP + CGN).

From lecture, you may recognize that this equation is essentially the same as the differential
equation for an RC circuit without inputs and the corresponding solution is simply the homoge-
neous solution for this differential equation

Vout, 1(t) = Ke−
t
τ = Ke

− t
Ron, N(CGP+CGN) (14)

We can then use our initial condition:

Vout, 1(0) = Ke
− 0

Ron, N(CGP+CGN) (15)

VDD = K (16)

Thus, our final solution is

Vout, 1(t) = VDDe
− t

Ron, N(CGP+CGN) (17)

(c) Sketch the output voltage of the first inverter, showing clearly (1) the initial value, (2) the
asymptotic value, and (3) the time that it takes for the voltage to decay to roughly 1/3 of its
initial value. (HINT: For part (3), use the approximation that e−1 = 1

e ≈ 1
3 .)

Solution:

(1) We know that the output of our inverter started with the initial value VDD.

(2) We can find the asymptotic value by plugging in t = ∞ to the solution we found for Vout, 1(t)

to find Vout, 1 = VDDe
− ∞

Ron, N(CGP+CGN) = 0.
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(3) To approximate when the output will decay to 1
3 its original value, we use the fact that

e−1 = 1
e ≈ 1

3 . We thus want to find when Vout, 1 = VDDe−1.
This will occur when the e term is raised to −1, which occurs when t = τ = Ron, N(CGP +

CGN) = 2 × 10−12seconds.
Note the significance of the time constant τ; as defined in the differential equation and solu-
tion to the differential equation, it provides a measure of how much time it takes for a system
to reach its steady state, which can be compared between different systems to compare their
speeds.
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Vout, 1 over time

Figure 12
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