1 Conditions for Equilibria

Continuous-Time Systems

Let us take a closer look at the conditions for a linear system represented by the differential equation

\[
\frac{d}{dt} \dot{x}(t) = A\dot{x}(t) + B\ddot{u}(t) \quad (1)
\]

From the get-go we see that \((\dot{x}^*, \ddot{u}^*) = (\vec{0}, \vec{0})\) must be an equilibrium point. This is since the system is at rest. Now if we put in a constant input \(\ddot{u}^*\) then to solve for equilibria, we get the following system of equations

\[
A\dot{x} + B\ddot{u}^* = \vec{0} \quad (2)
\]

To solve for the states \(\dot{x}\) in which the system would be in equilibrium, our analysis boils down to whether the square matrix \(A\) is invertible.\(^1\)

a) If \(A\) is invertible, then there is a unique equilibrium point \(\dot{x}^* = -A^{-1}B\ddot{u}^*\).

b) If \(A\) is non-invertible, depending on the range of \(A\), we have two scenarios.

- If \(B\ddot{u} \in \text{Col}(A)\) then we will have infinitely many equilibrium points.
- If \(B\ddot{u} \notin \text{Col}(A)\) then the system has no solution and we will have no equilibrium points.

Discrete-Time Systems

Now let’s take a look at the discrete-time system

\[
\dot{x}(t + 1) = A\dot{x}(t) + B\ddot{u}(t) \quad (3)
\]

Again we see that \((\vec{0}, \vec{0})\) is an equilibrium point but notice that the conditions for equilibria are different for discrete-time systems. A system is in equilibrium if it is not changing. In otherwords, this means that \(\dot{x}^*(t + 1) = \dot{x}^*(t)\) therefore, for a constant input \(\ddot{u}^*\) we get the following system of equations

\[
\dot{x} = A\dot{x} + B\ddot{u}^* \quad \implies (I - A)\dot{x} = B\ddot{u}^* \quad (4)
\]

The conditions for equilibria now depend on the matrix \(I - A\) being invertible instead of the matrix \(A\).

\(^1\)This should be review from 16A/54, but we restate it here since it isn’t quite obvious when \(A\) is singular or non-invertible. Normally a singular matrix has infinite solutions but take the system \(A\vec{x} = \vec{b}\) with \(A = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}\) and \(\vec{b} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}\). This leads to a contradiction that \(x_1 = 0 \neq 1\).
2 Stability

Continuous time systems

A continuous time system is of the form:

\[
\frac{d\vec{x}(t)}{dt} = A\vec{x}(t) + B\vec{u}(t)
\]

This system is stable if \(\text{Re}\{\lambda_i\} < 0\) for all \(\lambda_i\)'s are the eigenvalues of \(A\). If we plot all \(\lambda_i\) for \(A\) on the complex plane, if all \(\lambda_i\) lie to the left of \(\text{Re}\{\lambda_i\} = 0\), then the system is stable.

If \(\text{Re}\{\lambda_i\} \geq 0\), the system is unstable in the context of BIBO stability.
Discrete time systems

A discrete time system is of the form:

\[\tilde{x}(t + 1) = A\tilde{x}(t) + B\tilde{u}(t) \]

This system is stable if \(|\lambda_i| < 1\) for all \(\lambda_i\), where \(\lambda_i\)'s are the eigenvalues of \(A\). If we plot all \(\lambda_i\) for \(A\) on the complex plane, if all \(\lambda_i\) lie within (not on) the unit circle, then the system is stable.

If \(|\lambda| \geq 1\), we say the system is unstable in the context of Bounded-Input Bounded-Output (BIBO) stability.
3 Jacobian Warm-Up

Consider the following function $f : \mathbb{R}^2 \mapsto \mathbb{R}^3$

$$f(x_1, x_2) = \begin{bmatrix} f_1(x_1, x_2) \\ f_2(x_1, x_2) \\ f_3(x_1, x_2) \end{bmatrix} = \begin{bmatrix} x_1^2 - e^{x_2^2} \\ x_1^2 + \sin(x_1)x_2^2 \\ \log(1 + x_1^2) \end{bmatrix}$$

Calculate its Jacobian.

Answer

$$\frac{df}{dx} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \\ \frac{\partial f_3}{\partial x_1} & \frac{\partial f_3}{\partial x_2} \end{bmatrix} = \begin{bmatrix} 2x_1 & -2x_2e^{x_2^2} \\ 2x_1 + \cos(x_1)x_2^2 & 2\sin(x_1)x_2 \\ \frac{2x_1}{1 + x_1^2} & 0 \end{bmatrix}$$
4 Linearization

Consider a mass attached to two springs:

We assume that each spring is linear with spring constant k and resting length X_0. We want to build a state space model that describes how the displacement y of the mass from the spring base evolves. The differential equation modeling this system is $\frac{d^2y}{dt^2} = -\frac{2k}{m}(y - X_0 \frac{y}{\sqrt{y^2 + a^2}}).

a) Write this model in state space form $\dot{x} = f(x)$.

Answer

We introduce states $x_1 = y$ and $x_2 = \dot{y}$. Writing the model in state space form gives

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{2k}{m} \left(x_1 - X_0 \frac{x_1}{\sqrt{x_1^2 + a^2}} \right) \end{bmatrix}.$$

b) Find the equilibrium of the state-space model. You can assume $X_0 < a$.

Answer

We find the equilibrium by solving $0 = \dot{x} = f(x)$:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\frac{2k}{m} \left(x_1 - X_0 \frac{x_1}{\sqrt{x_1^2 + a^2}} \right) \end{bmatrix}.$$

The unique solution is the equilibrium at $(x_1, x_2) = (0, 0)$.

c) Linearize your model about the equilibrium.

Answer

$$\begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{x=(0,0)} \bigg|_{x=(0,0)} = \begin{bmatrix} 0 & \frac{-2k}{m} \left(1 - X_0 \frac{a^2}{(x_1^2 + a^2)^{3/2}} \right) \\ 0 & \frac{-2k}{m} \left(1 - X_0 \frac{a}{a} \right) \end{bmatrix} \bigg|_{x=(0,0)} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$
So the linearized system is
\[\dot{x} = \begin{bmatrix} 0 & 1 \\ -\frac{2k}{m} \left(1 - \frac{X_0}{a}\right) & 0 \end{bmatrix} x. \]

\[\begin{bmatrix} 1 - \frac{X_0}{a} \\ 0 \end{bmatrix} < 0. \]
\[\begin{bmatrix} 1 - \frac{X_0}{a} \\ 0 \end{bmatrix} > 0. \]
\[\lambda = \pm \sqrt{\frac{2k}{m} \left(1 - \frac{X_0}{a}\right)} j. \]

Since the linearized system has purely imaginary eigenvalues that are not repeated, their real parts are zero. Therefore the equilibrium is unstable.

d) Compute the eigenvalues of your linearized model. Is this equilibrium stable?

Answer
To compute the eigenvalues, we solve
\[0 = \det(A - \lambda I) = \det\left(\begin{bmatrix} -\frac{2k}{m} \left(1 - \frac{X_0}{a}\right) & 1 \\ -\lambda & -\lambda \end{bmatrix}\right) = \lambda^2 + \frac{2k}{m} \left(1 - \frac{X_0}{a}\right). \]

Since \(X_0 < a\), this means that \(1 - \frac{X_0}{a}\) > 0. So we have a pair of imaginary eigenvalues
\[\lambda = \pm \sqrt{\frac{2k}{m} \left(1 - \frac{X_0}{a}\right)} j. \]
5 Stability in discrete time system

Determine which values of α and β will make the following discrete-time state space models stable. Assume, α and β are real numbers and $b \neq 0$.

a) $x(t + 1) = \alpha x(t) + bu(t)$

Answer

$|\alpha| < 1$

b) $\tilde{x}(t + 1) = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \tilde{x}(t) + b\tilde{u}(t)$

Answer

The eigenvalues of this system are:

$\lambda = \alpha \pm j\beta$

$|\lambda| = \sqrt{\alpha^2 + \beta^2}$

For this system to be stable, $|\lambda| < 1$, so

$\alpha^2 + \beta^2 < 1$

c) $\tilde{x}(t + 1) = \begin{bmatrix} 1 & \alpha \\ 0 & 1 \end{bmatrix} \tilde{x}(t) + b\tilde{u}(t)$

Answer

The eigenvalues of this system are

$\lambda = 1, 1$

This means that regardless of α, this system is always unstable since $|\lambda| \geq 1$.