1 Discrete Time Systems

Consider a discrete-time system with $x[n]$ as input and $y[n]$ as output.

$$
\begin{align*}
 x[n] & \rightarrow \boxed{} \rightarrow y[n]
\end{align*}
$$

The following are some of the possible properties that a system can have:

Linearity

A linear system has the properties below:

1. **additivity**
 $$
 x_1[n] + x_2[n] \rightarrow \boxed{} \rightarrow y_1[n] + y_2[n] \tag{1}
 $$

2. **scaling** (or homogeneity)
 $$
 ax[n] \rightarrow \boxed{} \rightarrow ay[n] \tag{2}
 $$

 Here, α is some constant.

 Together, these two properties are known as **superposition**:

 $$
 a_1 x_1[n] + a_2 x_2[n] \rightarrow \boxed{} \rightarrow a_1 y_1[n] + a_2 y_2[n]
 $$

Time Invariance

A system is time-invariant if its behavior is fixed over time:

$$
\begin{align*}
 x[n - n_0] & \rightarrow \boxed{} \rightarrow y[n - n_0] \tag{3}
\end{align*}
$$

Causality

A causal system has the property that $y[n_0]$ only depends on $x[n]$ for $n \in (-\infty, n_0]$. An intuitive way of interpreting this condition is that the system does not “look ahead.”

Bounded-Input, Bounded-Output (BIBO) Stability

In a BIBO stable system, if $x[n]$ is bounded, then $y[n]$ is also bounded. A signal $x[n]$ is bounded if there exists an M such that $|x[n]| \leq M < \infty \ \forall n.$
2 Linear Time-Invariant (LTI) Systems

A system is LTI if it is both linear and time-invariant. We define the impulse response of an LTI system as the output \(h[n] \) when the input \(x[n] = \delta[n] \) where \(\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases} \).

An LTI system can be uniquely characterized by its impulse response \(h[n] \). In addition, the following properties hold:

- An LTI system is causal iff \(h[n] = 0 \quad \forall n < 0 \).
- An LTI system is BIBO stable iff its impulse response is absolutely summable:

\[
\sum_{n=-\infty}^{\infty} |h[n]| < \infty
\]

Convolution Sum

Consider the following LTI system with impulse response \(h[n] \):

\[
\begin{array}{ccc}
x[n] & \rightarrow & \square \\
& \rightarrow & y[n]
\end{array}
\]

Notice that we can write \(x[n] \) as a sum of impulses:

\[
x[n] = \ldots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \ldots = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]
\]

In addition, we know that:

\[
\begin{array}{ccc}
\delta[n] & \rightarrow & \square \\
& \rightarrow & h[n]
\end{array}
\]

By applying the LTI property of our system, we get that

\[
x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k] \rightarrow \square \rightarrow y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]
\]

The expression \(\sum_{k=-\infty}^{\infty} x[k]h[n-k] \) is referred to as the convolution sum and can be written as \(x[n] * h[n] \) or \((x * h)[n] \).
Determine if the following systems are linear, time-invariant, and/or causal.

(a) $y[n] = 2x[-2 + 3n] + 2x[2 + 3n]$

Answer

linear, not time-invariant, not causal

- **Linearity:** Set the input to $\hat{x}[n] = a_1 x_1[n] + a_2 x_2[n]$. Then

 $$
 \hat{y}[n] = 2\hat{x}[-2 + 3n] + 2\hat{x}[2 + 3n] \\
 = 2(a_1 x_1[-2 + 3n] + a_2 x_2[-2 + 3n]) + 2(a_1 x_1[2 + 3n] + a_2 x_2[2 + 3n]) \\
 = 2a_1 x_1[-2 + 3n] + 2a_1 x_1[2 + 3n] + 2a_2 x_2[-2 + 3n] + 2a_2 x_2[2 + 3n] \\
 = a_1 \left(2x_1[-2 + 3n] + 2x_1[2 + 3n]\right) + a_2 \left(2x_2[-2 + 3n] + 2x_2[2 + 3n]\right)
 $$

- **Time invariance:**

 Let $\hat{x}[n] = x[n - n_0]$ be a delayed input signal. Then, the corresponding output $\hat{y}[n]$ is equal to $2x[-2 + 3n - n_0] + 2x[2 + 3n - n_0]$. However, we can see that $\hat{y}[n] \neq y[n - n_0] = 2x[-2 + 3(n - n_0)] + 2x[2 + 3(n - n_0)]$

- **Causality:** Note that $y[0] = 2x[-2] + 2x[2]$ depends on $x[2]$, so the system is not causal.

(b) $y[n] = 4^{x[n]}$

Answer

non-linear, time-invariant, causal

- **Linearity:** Let $\hat{x}[n] = 2x[n]$. Then $\hat{y}[n] = 16^{\hat{x}[n]} \neq 2y[n]$. Thus, the system is not linear.

- **Time invariance:** Let $\hat{x}[n] = x[n - n_0]$. Then $\hat{y}[n] = 4^{\hat{x}[n]} = 4^{x[n-n_0]} = y[n - n_0]$, so the system is time-invariant.

- **Causality:** Note that $y[n_0]$ depends on $x[n_0]$ only, and not on any $x[n]$ with $t > n_0$. The system is therefore causal.

Additional practice:

(c) $y[n] - y[n - 1] = x[n] - x[n - 1] - x[n - 2]$
Answer

linear, time-invariant, causal

- Linearity: Let $x_1[n]$ and $x_2[n]$ be inputs with corresponding outputs $y_1[n]$ and $y_2[n]$ Set the input to $\hat{x}[n] = a_1x_1[n] + a_2x_2[n]$. Then

\[
\begin{align*}
\hat{y}[n] - \hat{y}[n-1] &= \hat{x}[n] - \hat{x}[n-1] - \hat{x}[n-2] \\
&= (a_1x_1[n] + a_2x_2[n]) - (a_1x_1[n-1] + a_2x_2[n-1]) - (a_1x_1[n-2] + a_2x_2[n-2]) \\
&= a_1(x_1[n] - x_1[n-1] - x_1[n-2]) + a_2(x_2[n] - x_2[n-1] - x_2[n-2]) \\
&= a_1(y_1[n] - y_1[n-1]) + a_2(y_2[n] - y_2[n-1])
\end{align*}
\]

Note that this is true for all n.

- Time invariance: Consider input $x[n]$ and corresponding output $y[n]$ Let $\hat{x}[n] = x[n - n_0]$. The corresponding output $\hat{y}[n]$ follows

\[
\begin{align*}
\hat{y}[n] - \hat{y}[n-1] &= \hat{x}[n] - \hat{x}[n-1] - \hat{x}[n-2] \\
&= x[n - n_0] - x[n - n_0 - 1] - x[n - n_0 - 2] \\
&= y[n - n_0] - y[n - n_0 - 1].
\end{align*}
\]

Therefore, the system is time-invariant.

- Causality: Note that $y[n_0] - y[n_0 - 1]$ depends only on $x[n_0], x[n_0 - 1], x[n_0 - 2]$, and $n_0, n_0 - 1, n_0 - 2 < n_0$ so the system is causal (no output depends on a future input).

d) $y[n] = x[n] + nx[n - 1]$

Answer

linear, not time-invariant, causal

- Linearity: Let $x_1[n]$ and $x_2[n]$ be inputs with corresponding outputs $y_1[n]$ and $y_2[n]$ Set the input to $\hat{x}[n] = a_1x_1[n] + a_2x_2[n]$. We check the system is linear:

\[
\begin{align*}
\hat{y}[n] &= \hat{x}[n] + nx[n-1] \\
&= a_1x_1[n] + a_2x_2[n] + n(a_1x_1[n-1] + a_2x_2[n-1]) \\
&= a_1(x_1[n] + nx_1[n-1]) + a_2(x_2[n] + nx_2[n-1]) \\
&= a_1y_1[n] + a_2y_2[n].
\end{align*}
\]

- Time invariance: Let $x[n]$ be an input with output $y[n]$. Set $\hat{x}[n] = x[n - n_0]$ for $n_0 \neq 0$ and note that $y[n - n - 0] = x[n - n_0] + (n - n_0)x[n - n_0 - 1]$ but $\hat{y}[n] = \hat{x}[n] + nx[n-1] = x[n - n_0] + nx[n - n_0 - 1]$. Therefore $\hat{y}[n] \neq y[n-n_0]$, and the system is not time invariant.

- Causality: Observe that $y[n_0]$ only depends on x at n_0 and $n_0 - 1$, so it does not depend on any future x. The system is causal.

e) $y[n] = 2^n \cos(x[n])$
Answer

not linear, not time-invariant, causal

• Linearity: Suppose $x[n]$ is an input with corresponding output $y[n]$, and let $\hat{x}[n] = 2x[n]$. Then

\[
\hat{y}[n] = 2^n \cos(\hat{x}[n]) \\
= 2^n \cos(2x[n]) \\
\neq 2(2^n) \cos x[n].
\]

Therefore, the system is not linear.

• Time invariance: Consider the sequence $\hat{x}[n] = -x[n - n_0]$ for some $n_0 \neq 0$. Note that

\[
\hat{y}[n] = 2^n \cos(\hat{x}[n]) \\
= 2^n \cos(x[n - n_0]) \\
\neq 2^{n-n_0} \cos(x[n - n_0]) = y[n - n_0].
\]

This shows the system is not time invariant.

• Causality: Observe that $y[n_0]$ does not depend on any inputs $x[n]$ for $n > n_0$, so the system is causal.
4 Convoluted Convolution

a) Show that convolution is commutative. That is, show that
\[(x * h)[n] = (h * x)[n].\]

Answer

\[
(x * h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] \\
= \sum_{m=-\infty}^{\infty} x[n-m]h[m] \quad \text{Let } m = n-k. \\
= \sum_{m=-\infty}^{\infty} h[m]x[n-m] \\
= (h * x)[n]
\]

b) Show that \(\delta[n]\) is a convolution identity. That is, show that
\[(x * \delta)[n] = x[n].\]

Answer

Since convolution is commutative, we know that
\[(x * \delta)[n] = (\delta * x)[n].\]

\[
(\delta * x)[n] = \sum_{k=-\infty}^{\infty} \delta[k]x[n-k]
\]

Since \(\delta[k] = 0\) for all \(k \neq 0\), it follows that
\[(\delta * x)[n] = \delta[0]x[n] = x[n].\]

Additional Practice:

c) Show that convolution by \(\delta[n-n_0]\) shifts \(x[n]\) by \(n_0\) steps to the right.

Answer

Since convolution is commutative \(x[n] * \delta[n-n_0] = \delta[n-n_0] * x[n].\)

\[
\delta[n-n_0] * x[n] = \sum_{k=-\infty}^{\infty} \delta[k-n_0]x[n-k]
\]

Then since \(\delta[k-n_0] = 0\) for all \(k \neq n_0\), it follows that
\[
\delta[n-n_0] * x[n] = \delta[0]x[n-n_0] = x[n-n_0]
\]

d) Show that convolution is distributive. In other words, show that
\[(x * (h_1 + h_2))[n] = (x * h_1)[n] + (x * h_2)[n].\]
Answer

Since multiplication is distributive, it follows that convolution is distributive

\[
(x * (h_1 + h_2))[n] = \sum_{k=-\infty}^{\infty} x[k](h_1[n - k] + h_2[n - k])
\]

\[
= \sum_{k=-\infty}^{\infty} x[k]h_1[n - k] + \sum_{k=-\infty}^{\infty} x[k]h_2[n - k]
\]

\[
= (x * h_1)[n] + (x * h_2)[n]
\]
5 Mystery System

Consider an LTI system with the following impulse response:

\[h[n] = \frac{1}{2} (\delta[n] + \delta[n - 1]) \]

(a) Create a sketch of this impulse response.

![Impulse Response Sketch](image)

Answer

(b) What is the output of our system if the input is the unit step \(u[n] \)?

![Output Sketch](image)
Answer

\[y[n] = (u * h)[n] = \sum_{k=-\infty}^{\infty} u[k] h[n-k] = \sum_{k=0}^{\infty} h[n-k] \]

For \(n < 0 \), \(y[n] = 0 \). When \(n > 0 \),

\[y[0] = \sum_{k=0}^{\infty} h[-k] = h[0] = 0.5 \]
\[y[1] = \sum_{k=0}^{\infty} h[1-k] = h[0] + h[1] = 1 \]
\[y[n] = \sum_{k=0}^{\infty} h[n-k] = h[0] + h[1] + \ldots + h[n] = 1 \text{ for } n > 1. \]

The output \(y[n] \) is shown below.
c) What is the output of our system if our input is \(x[n] = (-1)^n u[n] \)?

![Graph of \(x[n] \) vs. \(n \)]

Answer

\[
y[n] = (u * h)[n] = \sum_{k=-\infty}^{\infty} x[n] h[n - k] = \sum_{k=0}^{\infty} (-1)^k h[n - k]
\]

For \(n < 0 \), \(y[n] = 0 \). When \(n > 0 \),

\[
y[0] = \sum_{k=0}^{\infty} h[-k] = h[0] = 0.5
\]

\[
y[1] = \sum_{k=0}^{\infty} h[1 - k] = h[0] - h[1] = 0
\]

\[
y[2] = \sum_{k=0}^{\infty} h[2 - k] = h[2] - h[1] + h[0] = 0
\]

\[
\vdots
\]

\[
y[n] = 0 \text{ for } n > 0.
\]
d) This system is called the two-point simple moving average (SMA) filter. Based on the previous parts, why do you think it bears this name?

Answer

The output of the system at each timestep \(n \) is the average of \(x[n] \) and \(x[n-1] \). To show this formally, we can look at the convolution \(y = x * h \)

\[
y[n] = (x * h)[n] = x * \left(\frac{1}{2} \delta[n] + \frac{1}{2} \delta[n-1] \right)
\]

\[
= \frac{1}{2} x[n] + \frac{1}{2} x[n-1]
\]

This sort of system can be used in areas like technical analysis to gain insight into stock prices and trends (usually these methods would use a longer window than just two days). There are also other variants used like the exponential moving average (EMA) filter.