
EECS 16B Designing Information Systems and Devices II UC Berkeley Summer 2022
Midterm

Exam Location: AAPB

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (sign)

PRINT your discussion sections and (u)GSIs (the ones you attend):

Row Number: Seat Number:

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. Honor Code (0 pts.)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow
the rules and do this exam on my own.

Note that if you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution: Any attempt to copy the honor code and sign should get full points.

2. What’s something you’re proud of having done this last year? (2 pts.)

Solution: Any answer is sufficient.

3. What fall classes or plans are you excited for? (2 pts.)

Solution: Any answer is sufficient.

Do not turn this page until the proctor tells you to do so.
You can work on the above problems before time starts.
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4. Complex Numbers (7 pts.)

(a) (3 pts.) Let z1 = 4ej π
12 and z2 = 2ej π

2 . What is
∣∣∣ z1

z2

∣∣∣? What is ∠(z1 · z2)?

Solution:

•
∣∣∣ z1

z2

∣∣∣ = |z1|
|z2|

= |4ej π
12 |

|2ej π
2 |

= 4
2 = 2

• ∠(z1 · z2) = ∠(4ej π
12 · 2ej π

2 ) = ∠(8ej 7π
12 ) = 7π

12 . The angle can also be any value 7π
12 + 2πk for

an integer k.

(b) (4 pts.) Convert the voltage phasor Ṽout = 3+ 3j into a sinusoidal signal Vout(t) = A cos(ωt + φ).
Specifically, solve for the values of A and φ.

Solution: The voltage phasor has polar form Ṽout = 3
√

2ej π
4 . 3+ 3j is plotted below to depict the

angle and magnitude.

0
Re

Im

3 + 3j

3

3j

π
4

3
√

2

In this class, we use the convention that a phasor is the coefficient of ejωt. As such, we can write
an expression for Vout(t).

Vout(t) = Ṽoutejωt + Ṽoute−jωt

= 3
√

2ej π
4 ejωt + 3

√
2ej π

4 e−jωt

= 3
√

2(ej(ωt+ π
4 )) + e−j(ωt+ π

4 ))

= 3
√

2 · 2 cos
(

ωt +
π

4

)
= 6
√

2 cos
(

ωt +
π

4

)
So the sinusoidal voltage Vout has amplitude A = 6

√
2, and angle φ = π

4 .

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 2
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5. NMOS Logic Inverter (14 pts.)

(a) (14 pts.) We have an NMOS logic implementation of an inverter shown below. The circuit has a
voltage input Vin(t) = t, t ≥ 0, (Vin(t) = 0 V for t ≤ 0) seen below.

G

S

D

−

+

Vout

2 kΩ

4 V

1 kΩ−
+Vin

(a) NMOS Inverter

t[s]

Vin[V]

0
0

1

1

2

2

3

3

4

4

5

5

(b) Voltage input, Vin

Figure 1: Circuit figure and input signal.

For the transistor models below, define the threshold voltage as Vtn = 2 V. Match each NMOS
transistor model, plugged into the NMOS inverter circuit, with its corresponding Vout plot on
the next page. (Note: All capacitors are fully discharged at t = 0.)

G

S

VGS ≥ Vtn

D

(I) Model I

G

S

6 kΩ

VGS ≥ Vtn

D

(II) Model II

G

1 µF

S

2 kΩ

VGS ≥ Vtn

D

(III) Model III

G

2.5 µF

S

2 kΩ

VGS ≥ Vtn

D

(IV) Model IV

(HINT: You can use the below graphs to evaluate VGS for Models III and IV. We recommend using a
scratch page to draw out the NMOS Inverter circuit with the various transistor models plugged in.)

t[s]

VGS[V]

1.996
1.997
1.998
1.999
2.000
2.001

1.998 1.999 2.000 2.001 2.002 2.003

(a) VGS for Model III

t[s]

VGS[V]

1.996
1.997
1.998
1.999
2.000
2.001

1.998 1.999 2.000 2.001 2.002 2.003

(b) VGS for Model IV

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 3
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t[s]

Vout[V]

0
1
2
3
4
5

1.998 1.999 2.000 2.001 2.002 2.003

(A) Plot A

t[s]

Vout[V]

0
1
2
3
4
5

1.998 1.999 2.000 2.001 2.002 2.003

(B) Plot B

t[s]

Vout[V]

0
1
2
3
4
5

1.998 1.999 2.000 2.001 2.002 2.003

(C) Plot C

t[s]

Vout[V]

0
1
2
3
4
5

1.998 1.999 2.000 2.001 2.002 2.003

(D) Plot D

t[s]

Vout[V]

0
1
2
3
4
5

1.998 1.999 2.000 2.001 2.002 2.003

(E) Plot E

t[s]

Vout[V]

0
1
2
3
4
5

1.998 1.999 2.000 2.001 2.002 2.003

(F) Plot F

Model # Plot A Plot B Plot C Plot D Plot E Plot F

I © © © © © ©

II © © © © © ©

III © © © © © ©

IV © © © © © ©

Solution: Let’s analyze the four different models, case by case. We start with model I.

1 kΩ G
+

−

VGS

S

VGS ≥ 2 V
D

2 kΩ

4 V

−
+Vin

+

−

Vout

First, consider what Vout is when the switch is open. No current flows through the upper 2kΩ
resistor as it is in series with an open switch. From Ohm’s law we have that V−Vout

2kΩ = 0, which
implies that Vout = 4V when the switch is open. By similar reasoning, the open over which VGS

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4



EECS 16B Midterm
PRINT your name and student ID:

2022-07-28 19:14:15-04:00

is taken permits no current so VGS = Vin. If this is the case, we see the transistor hit the threshold
voltage, VGS = 2V, when Vin does at t = 2s. So the switch turns on at t = 2s, and we should see
the voltage on the output instantly drop to ground as there is a short from ground to Vout. The
plot that matches this behavior of switching from 4V to 0V at t = 2s is plot A.

Let us examine model II. The circuit is depicted below. The only difference is that we now have
a 6kΩ resistor from the drain to source, instead of a short of the previous model.

1 kΩ G
+

−

VGS

S

6kΩ

VGS ≥ 2 V
D

2 kΩ

4 V

−
+Vin

+

−

Vout

Given that this is the case, we should still see Vout = 4V at the beginning. Vout should then drop
to some voltage at t = 2s. However, the voltage that it drops to is now determined by a voltage
divider supplied by 4V, with 2kΩ and 6kΩ resistors in series, with the output Vout taken over
the 6kΩ resistor. This means that Vout =

6kΩ
2kΩ+6kΩ · 4V = 3V for t ≥ 2s when the switch closes.

The plot that matches this behavior is plot B.

Consider now models III and IV, for which the only difference is the capacitance value. A circuit
with the appropriate model drawn in is shown below.

1 kΩ G

C

S

2kΩ

VGS ≥ 2 V
D

2 kΩ

4 V

−
+Vin

+

−

Vout

Despite the addition of a capacitor, we still see the output is determined by a voltage divider
without any capacitors as in the last case, so we should not see any charging or discharging
behavior for Vout. This immediately rules out plots C and F, which have exponential decays to
some steady state voltage. There is however, charging behavior for VGS, but it is not necessary to

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5
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solve the differential equation as the switch closure times are indicated by the hint plots as being
t = 2.001s and t = 2.0025s for models III and IV respectively. Intuition regarding RC circuits is
an alternative to the hint, as it is the case that it takes a longer time to charge up a larger capacitor,
so there is a greater delay for the circuit with C = 2.5µF. Given that both models have the same
output resistor value in the voltage divider of 2kΩ, the output voltage should be Vout = 2V when
the switch closes. Thus for model III, the correct plot is D, and for model IV the correct plot is E.
All answers bubbled in are shown in a table below.

Model # Plot A Plot B Plot C Plot D Plot E Plot F

I © © © © ©

II © © © © ©

III © © © © ©

IV © © © © ©

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6
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6. Bass Speaker Pre-amplifier (23 pts.)

(a) (4 pts.) Let’s design a bass speaker pre-amplifier. We want our pre-amplifier to amplify lower
frequencies and attenuate higher frequencies.

In our toolkit, we have one inductor, one op-amp, and one resistor (in addition to the circuit
elements already used to implement the Gain Stage in the figure below). Do not worry about the
exact values of the inductance and resistance just yet. Use these components and draw in the
circuits that implement the rest of our pre-amplifier in the boxes in the figure below.

Ṽin

Low-Pass Filter Buffer

−

+

Rin
+

−

Ṽmid

Rf

+

−

Ṽout

Gain Stage

Solution:

Ṽin

Low-Pass Filter Buffer

L

R
+

−

−

+

Rin
+

−

Ṽmid

Rf

+

−

Ṽout

Gain Stage

The correct ordering of L and R in the low-pass filter can be checked by computing the transfer
function H(jω) = 1

1+jω L
R

of the voltage divider formed by L and R. The buffer is an op-amp

in negative feedback. Recall that we use the buffer to prevent the loading effect between the
different elements in the circuit. It enables us to treat the overall system transfer function as a
cascade (mathematically, the multiplicative product) of the transfer functions of its constituent
parts.

(b) (2 pts.) Instead of using an inductor, consider the low-pass filter constructed using a resistor
and capacitor shown below. If we want a cutoff frequency of ω = 103 rad

s what should the
capacitance C be, given that the resistance is 1 kΩ?

Solution: An RC low-pass filter has a cutoff frequency of ωc = 1
RC , which can be seen from the

transfer function H(jω) = 1
1+j ω

ωc
= 1

1+jωRC . Thus, C = 1
ωcR = 1

103 rad
s ·1kΩ

= 1µF.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7
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−

+

Ṽin

1kΩ

C

+

−

Ṽout

(c) (7 pts.) We want to achieve a transfer function magnitude of 10 in the Gain Stage of our pre-
amplifier circuit. We will find what Rf should be, given resistance Rin = 20Ω.

i. Solve for the transfer function H(jω) =
Ṽout

Ṽmid
.

ii. Based on your transfer function from the previous subpart what should Rf be to achieve
a transfer function magnitude of |H(jω)| = 10?

Solution:

i. To solve for the transfer function, if we didn’t happen to memorize the inverting amplifier
input-output relationship, we can observe that by negative feedback and the positive ter-
minal of the op amp being shorted to ground that the negative terminal must also have the
same voltage as ground: 0V. By KCL at the negative input terminal of the op amp we have

that Ṽmid−0V
Rin

= 0V−Ṽout
Rf

, which tells us that H(jω) =
Ṽout

Ṽmid
= − Rf

Rin
. Either of − Rf

Rin
or − Rf

20Ω

are correct.

ii. Now, we want that |H(jω)| =
∣∣∣− Rf

20Ω

∣∣∣ = |−Rf|
|20Ω | =

Rf
20Ω = 10. From the last equality we have

that Rf = 20Ω · 10 = 200Ω.

(d) (6 pts.) We have decided that we will select our inductance and resistance values for the ele-
ments from part (a) so that our pre-amplifier can pass all frequencies less than ωc = 102 rad

s , and
subsequently, amplify all the output by AV = 100.

i. Depict the desired low-pass behavior in a Bode magnitude plot that result from the in-
ductor and the resistor only.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8
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100 101 102 103 104 105 10610−1

100

101

102

103

ω( rad
s )

|H
(j

ω
)|

ii. Depict the desired Gain Stage behavior in a Bode magnitude plot.

100 101 102 103 104 105 10610−1

100

101

102

103

ω( rad
s )

|H
(j

ω
)|

iii. Depict the desired combined behavior from the previous two plots in a single Bode mag-
nitude plot.

100 101 102 103 104 105 10610−1

100

101

102

103

ω( rad
s )

|H
(j

ω
)|

Solution:

i. For the low-pass filter behavior, we have a first order filter with the following straight line

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 9
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approximations in terms of log |ω| vs log |H(jω)| relative to ωc = 102 rad
s :

• ω > ωc: log |HLPF(jω)| ≈ log
|ωc|
|ω| = log |ωc| − log |ω| = 2− log |ω|.

• ω < ωc: log |HLPF(jω)| ≈ log 1 = 0.

100 101 102 103 104 105 10610−1

100

101

102

103

ω( rad
s )

|H
(j

ω
)|

ii. For the Gain Stage behavior, we have a gain of AV = 102, which is a constant magnitude of
102 (or, a log-magnitude of log 102 = 2) for all angular frequencies ω.

100 101 102 103 104 105 10610−1

100

101

102

103

ω( rad
s )

|H
(j

ω
)|

iii. For the combined behavior, we can add the log-magnitudes of the previous stages to get the
combined input-output relationship:

• ω > ωc: log |HLPF(jω)|+ 2 ≈ 4− log |ω|.
• ω < ωc: log |HLPF(jω)|+ 2 ≈ 2.

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 10



EECS 16B Midterm
PRINT your name and student ID:

2022-07-28 19:14:15-04:00

100 101 102 103 104 105 10610−1

100

101

102

103

ω( rad
s )

|H
(j

ω
)|
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(e) (4 pts.) Let’s say we want to eliminate any phase shift caused by imperfections in the hardware;
we’ll hence follow the bass speaker pre-amplifier with a hypothetical "phase unshifter" circuit
component. What should the phase plot of the phase unshifter (right plot) look like given the
following phase plot (left plot) for the hardware imperfections so that the net phase is 0 for
ω = 101 to ω = 109? (Note: Both plots share the same y-axis values and scaling.)

101 102 103 104 105 106 107 108 109

−90

−45

0

45

90

ω( rad
s )

]
H
(j

ω
)
(d

eg
re

es
)

101 102 103 104 105 106 107 108 109

−π
2

−π
4

0

π
4

π
2

ω( rad
s )

]
H
(j

ω
)
(r

ad
ia

ns
)

Solution:

When two circuits are connected with loading accounted for, the transfer functions of the cir-
cuits multiply. The total transfer function phase will be the sum of each individual circuits
transfer function’s phase. In particular, for two transfer functions H1(jω) and H2(jω) that rep-
resent the input-output relationships of each circuit, the total phase for the input output behav-
ior is ∠(H2(jω) · H1(jω)) = ∠(H2(jω)) + ∠(H1(jω)). If we wish for the net phase to be zero,
∠(H2(jω)) +∠(H1(jω)) = 0, which means that we would like our phase-unshifter to have the
negative of the angle of the first transfer function: ∠(H2(jω)) = −∠(H1(jω)). The proper plot is
depicted below to the right.

101 102 103 104 105 106 107 108 109

−90

−45

0

45

90

ω( rad
s )

]
H
(j

ω
)
(d

eg
re

es
)

Hardware Imperfections

101 102 103 104 105 106 107 108 109

−π
2

−π
4

0

π
4

π
2

ω( rad
s )

]
H
(j

ω
)
(r

ad
ia

ns
)

Phase-unshifter

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12
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7. RLC Circuit from Time to Frequency (34 pts.)

Consider the following circuit fed by a constant voltage source VS.

−
+ VS

S1

S2

R

L

IL(t)

IC(t)

C
+

−
VC(t)

+

−

Vout(t)

The switch S1, open for t < 0, closes at t = 0, and the switch S2, closed for t < 0, opens at t = 0.
Assume VC(0) = 0 and IL(0) = 0.

(a) (8 pts.) Derive a set of two differential equations, one for IL(t), the current through the
inductor, and one for VC(t), the voltage across the capacitor. Write your answer in terms of R,
L, C, VS, and constants.

Solution: The circuit appears as follows:

−
+ VS

R

L

IL(t)

IC(t)

C
+

−
VC(t)

+

−

Vout(t)

From Ohm’s law for the resistor and KCL at the node with voltage VC, we have:

VS −VC
R

= IL + IC (1)

Substituting in the I-V relationship for capacitors in the previous equation, we now have:

VS −VC
R

= IL + C
dVC
dt

(2)

VS
RC
− VC

RC
=

IL
C

+
dVC
dt

(3)

VS
RC
− VC

RC
− IL

C
=

dVC
dt

(4)

Now, we can notice that VC = VL as the inductor and capacitor are in parallel. From the inductor
I-V relationship, we have:

L
dIL
dt

= VL = VC (5)

dIL
dt

=
VC
L

(6)

In summary, the two differential equations are as follows.

dVC
dt

= − VC
RC
− IL

C
+

VS
RC

(7)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13
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dIL
dt

=
VC
L

(8)

(b) (3 pts.) Using your answers from the previous part, create a vector differential equation with

the state vector being ~x(t) =

[
VC(t)
IL(t)

]
. Write your answers in terms of R, L, C, VS, and constants.

Solution: The previous part has the following differential equations.

dVC
dt

= − VC
RC
− IC

C
+

VS
RC

(9)

dIL
dt

=
VC
L

(10)

Stacking the above equations into matrix-vector form, we have

d
dt
~x(t) =

[
− 1

RC − 1
C

1
L 0

]
~x(t) +

[
1

RC
0

]
VS (11)

(c) (15 pts.) Regardless of your answer to the previous part, suppose the vector differential equation
is given by

d
dt
~x(t) =

[
−4 −6

1
2 0

]
︸ ︷︷ ︸

A

~x(t) +

[
4
0

]
︸︷︷︸
~b

VS (12)

You may use the fact that A is diagonalized as follows:[
−4 −6

1
2 0

]
︸ ︷︷ ︸

A

=

[
−6 −2
1 1

]
︸ ︷︷ ︸

V

[
−3 0
0 −1

]
︸ ︷︷ ︸

Λ

[
− 1

4 − 1
2

1
4

3
2

]
︸ ︷︷ ︸

V−1

(13)

With ~x(0) =~0, solve for ~x(t) and find the asymptotic/steady-state behavior as t→ ∞.

Solution: We can define ~̃x(t) to be the representation of ~x(t) in V-basis. In other words, ~̃x(t) =
V−1~x(t) and ~x(t) = V~̃x(t). Applying this, we have:

d
dt
~x(t) = A~x(t) +~bVS (14)

V−1
(

d
dt
~x(t)

)
= V−1 AV︸ ︷︷ ︸

Λ

~̃x(t) + V−1~bVS (15)

d
dt
~̃x(t) = Λ~̃x(t) +

[
− 1

4 − 1
2

1
4

3
2

] [
4
0

]
︸ ︷︷ ︸

V−1~b

VS (16)

d
dt
~̃x(t) =

[
−3 0
0 −1

]
~̃x(t) +

[
−1
1

]
VS (17)

The initial condition is ~̃x(0) = V−1~x(0) = V−1~0 =

[
0
0

]
. We can solve these equations one row at

a time, either by using substitution or the general first order differential equation solution. We
use the latter approach. Solve the first row equation for x̃1(t).

d
dt

x̃1 = −3x̃1 −VS (18)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14
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=⇒ x̃1(t) = −VSe−3t
∫ t

0
e3θ dθ (19)

= −VSe−3t e3θ

3

∣∣θ=t
θ=0 (20)

= −VSe−3t e3t − 1
3

(21)

= VS
e−3t − 1

3
(22)

And now solve the second row equation for x̃2(t).

d
dt

x̃2 = −x̃2 + VS (23)

=⇒ x̃2(t) = VSe−t
∫ t

0
eθ dθ (24)

= VSe−t(et − 1) (25)

= VS(1− e−t) (26)

so

~̃x(t) = VS

[
e−3t−1

3
1− e−t

]
(27)

Therefore,

~x(t) = V~̃x(t) = VS

[
−6 −2
1 1

] [
e−3t−1

3
1− e−t

]
= VS

[
2
(
e−t − e−3t)

e−3t−3e−t+2
3

]
(28)

Taking a limit as t→ ∞, we have

lim
t→∞

~x(t) = VS

[
0
2
3

]
(29)

In particular, we can say that limt→∞ VC(t) = 0, and that limt→∞ IL(t) = 2
3 VS.

(d) (5 pts.) Now, consider the same circuit but with an arbitrary sinusoidal voltage source instead
of the constant voltage source from part (a). Specifically, let Vin(t) = A cos(ωt + φ), for some
arbitrary constants A, ω, φ. The circuit below reflects this change.

+

−
Vin(t)

R

L

IL(t)

IC(t)

C
+

−
VC(t)

+

−

Vout(t)

Solve for the transfer function, H(jω) =
Ṽout

Ṽin
, of this circuit. You may write your answer in

terms of R, L, C, ω, and constants.

Solution: The output voltage is taken over the capacitor and the inductor. By treating it as
a single impedance we can recognize a voltage divider. Combine the parallel capacitor and
inductor impedances as follows:

Zeq = jωL|| 1
jωC

=
L
C

jωL + 1
jωC

=
jωL

1−ω2LC
(30)

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 15
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Using the voltage divider formula, we can find H(jω) as follows:

H(jω) =
Ṽout

Ṽin
(31)

=
Zeq

R + Zeq
(32)

=

jωL
1−ω2LC

R +
jωL

1−ω2LC

(33)

=
jωL

R + jωL−ω2RLC
(34)

(e) (3 pts.) Finally, find |H(jω)| for Vin(t) = VS, where VS is the voltage supplied by the constant
voltage source in part (a). (HINT: What would ω be for a constant value?)

Solution: We can find the magnitude of the transfer function as follows:

|H(jω)| = |jωL|
|R + jωL−ω2RLC| =

ωL√
(R−ωLC)2 + (ωL)2

(35)

Note that, since VS is a constant, it can be thought of as the slowest varying sinusoidal signal
with an angular frequency of ω = 0 (i.e., there is no oscillation with respect to time). You can
also check this by looking at a general sinusoid f (t) = A cos(ωt + φ) and setting ω = 0. We see
that f (t) = A cos(φ) is a constant with respect to time. Thus, in this case,

H(j0) =
0
R

= 0 (36)

This matches what we had from part 7.c, in that the steady state behavior is captured by phasor
domain analysis - any constant voltage fed to the system will lead to an output voltage of zero
after a long enough time passes for transients to die out.
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8. Straight Line Stability (24 pts.)

We define a discrete and continuous time system respectively as follows:

~x[i + 1] = Ad~x[i] +~bdu[i]︸ ︷︷ ︸
discrete time

d
dt
~x(t) = A~x(t) +~bu(t)︸ ︷︷ ︸

continuous time

where the state is ~x ∈ R2, the input to the system is u ∈ R, and we have parameters Ad, A ∈ R2x2,
and~bd,~b ∈ R2.

(a) (8 pts.) For the following problems, determine whether the system is stable or unstable.

~x[i + 1] = Ad~x[i] +~bdu[i]

Ad Stable Unstable[
−1 0
0 −0.5

]
© ©[

0 0.25
0.5 0

]
© ©

d
dt
~x(t) = A~x(t) +~bu(t)

A Stable Unstable[
0 7
0 −10

]
© ©[

−0.25j 0
0 0.25j

]
© ©

Solution:
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For ~x[i + 1] = Ad~x[i] +~bdu[i], we must check if the magnitude of the eigenvalues of Ad are less
than 1. (Note: It’s a strict inequality since we don’t know the value of~bd. If~bd = ~0 and Ad has
eigenvalues less than or equal to 1, we could have initial conditions that leads to an ~x[i] that does
not decay but does not blow up either.)

• The first matrix Ad =

[
−1 0
0 −0.5

]
is diagonal, so we can read off its diagonal entries for the

eigenvalues: λ1 = −1 and λ2 = −0.5. Since |λ1| = 1 ≥ 1, our system is unstable.

• The second matrix Ad =

[
0 0.25

0.5 0

]
is not diagonal, so we must solve for its eigenvalues.

0 = det(A− λI) (37)

0 = det

([
0 0.25

0.5 0

]
−
[

λ 0
0 λ

])
(38)

0 = det

([
−λ 0.25
0.5 −λ

])
(39)

0 = λ2 − 0.25(0.5) (40)

λ2 = 0.25(0.5) (41)

λ = ± 1
2
√

2
≈ ±0.353 (42)

Since |λ| < 1, the system is stable.

The correct answers for the discrete-time table are shown below:

Ad Stable Unstable[
−1 0
0 −0.5

]
©[

0 0.25
0.5 0

]
©

For d
dt~x(t) = A~x(t) + B~u(t), we must check if the real portion of the eigenvalues of A are less

than 0. (Note: It’s a strict inequality since we don’t know the value of~b, for a similar reason as in
the discrete case.)

• The first matrix A =

[
0 7
0 −10

]
is upper triangular, so we can read off the diagonal to get

the eigenvalues λ1 = 0 and λ2 = −10. Since Re{λ1} = 0 ≥ 0, the system is unstable.

• The second matrix A =

[
−0.25j 0

0 0.25j

]
is a diagonal matrix, so we can read off the diagonal

to get the eigenvalues λ = 0± 0.25j. Since Re{λ} = 0 ≥ 0, the system is also unstable.

The correct answers for the continuous-time table are shown below:

© UCB EECS 16B, Summer 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 18



EECS 16B Midterm
PRINT your name and student ID:

2022-07-28 19:14:15-04:00

A Stable Unstable[
0 7
0 −10

]
©[

−0.25j 0
0 0.25j

]
©

(b) (8 pts.) Assume that we are operating on a discrete time model (~x[i + 1] = Ad~x[i] +~bdu[i]), and
our control matrices Ad and~bd are fixed as follows:

Ad =

[
3 −1
2 1

]
,~bd =

[
0
−1

]

Let u[i] =
[
k1 k2

]
~x[i]. Solve for the characteristic polynomial of our new feedback-controlled

system in the form Cλ2 + Dλ + E. You may leave your answer in terms of k1 and k2.

Solution: To solve for the eigenvalue polynomial, let’s first solve our discrete time model equa-
tion with our given input u[i].

~x[i + 1] = A~x[i] +~bu[i] (43)

=

[
3 −1
2 1

]
~x[i] +

[
0
−1

] [
k1 k2

]
~x[i] (44)

=

[
3 −1
2 1

]
~x[i] +

[
0 0
−k1 −k2

]
~x[i] (45)

=

[
3 −1

2− k1 1− k2

]
~x[i] (46)

We can now solve for the characteristic polynomial of this new matrix.

0 = det(A− λI) (47)

= det

([
3 −1

2− k1 1− k2

]
−
[

λ 0
0 λ

])
(48)

= det

([
3− λ −1
2− k1 1− k2 − λ

])
(49)

= (1− k2 − λ)(3− λ) + 2− k1 (50)

= 3− λ− 3k2 + λk2 − 3λ + λ2 + 2− k1 (51)

= λ2 + (k2 − 4)λ + (−k1 − 3k2 + 5) (52)

Thus, C = 1, D = k2 − 4, and E = −k1 − 3k2 + 5.
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(c) (8 pts.) With a discrete system different from that in part (b), we assume a fixed value of k2 such
that our characteristic polynomial becomes the following:

λ2 − 2λ− (k1 + 2)

Find a range of values for k1 for which the system is stable. Please write your answers as either
a number or interval(s) of number(s) (i.e. 8 inclusive to ∞ would be [8, ∞)); if there is no solution,
you may say so. Justify your answer with your work.

Solution: Using the quadratic formula, we can solve for the values of λ.

λ =
−(−2)±

√
(−2)2 − 4(1)(−(k1 + 2))

2(1)
(53)

= 1±
√

4 + 4k1 + 8
2

(54)

= 1±
√

12 + 4k1

2
(55)

= 1±
√

3 + k1 (56)

There are three cases of interest, when the expression under the square root, 3 + k1, is positive,
zero, or negative.

• If 3 + k1 > 0 then
√

3 + k1 > 0. This means there is one eigenvalue, strictly greater than 1:
λ+ = 1 +

√
3 + k1 > 1. Thus, |λ+| ≥ 1 leading to instability for values of k1 with 3 + k1 > 0,

i.e., for k1 such that −3 < k1.

• If 3+ k1 = 0, then λ = 1±
√

0 = 1. Thus, for both eigenvalues, |λ| ≥ 1, leading to instability
for k1 = −3.

• If 3 + k1 < 0, then we have complex eigenvalues. Since 3 + k1 = −|3 + k1|, we can write
that λ = 1±

√
−|3 + k1| = 1± j

√
|3 + k1|. The magnitude of both eigenvalues is given by

|λ| =
√

12 + (3 + k1)2 ≥ 1 since 3 + k1 is nonzero. So for k1 such that k1 < −3, we have
instability.

Any choice of k1 ∈ R will lead to an unstable system since at least one of eigenvalues will have
|λ| ≥ 1. Thus, there is no solution.

Caveat: Students can also acknowledge that for a closed-loop system, since we effectively do
not have to worry about an external input causing our system to grow unbounded, |λ| = 1 is
valid to keep the system stable. In this case, students must determine that the only solution for
stability is k1 = 3 based on the previous analysis.
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9. Continuous Time Discretization and Back (14 pts.)

In this problem we will examine how to perform system ID on a continuous time system. Consider a
car with a two-dimensional state, ~x, whose dynamics are given by

d
dt
~x(t) = A~x(t) +~bu(t) (57)

where A ∈ R2×2 and~b ∈ R2 are unknown. The state’s entries are written as ~x(t) =

[
x1(t)
x2(t)

]
.

(a) (6 pts.) Suppose we discretized our continuous time system and obtained the following dynam-

ics for our system with state ~xd[i] =

[
xd,1[i]
xd,2[i]

]
.

~xd[i + 1] = Ad~xd[i] +~bdud[i] (58)

The parameters Ad ∈ R2×2 and~bd ∈ R2 are unknown. We apply discrete input ud[i] from i = 0
to i = 3, and obtain the following state observations.

i ud[i] xd,1[i] xd,2[i]

0 -1 2 3

1 0 7 8

2 1 4 6

3 0 5 9

4 N/A 8 13

Figure 5: Data Collected from Sampling the System

We want to identify Ad and~bd by setting up a least squares problem of the form DP ≈ S where

P =

[
A>d
~b>d

]
.

Express the D and S matrices in terms of numerical values of xd,1[i], xd,2[i], and ud[i] from the
table.

Solution: Note that we can rewrite eq. (58) as

~xd[i + 1] = Ad~xd[i] +~bdud[i] =
[

Ad ~bd

] [~xd[i]
ud[i]

]
(59)

Taking transposes of both sides, we have

~xd[i + 1]> =
[
~xd[i]> ud[i]

] [A>d
~b>d

]
(60)

Now, we have to use the known quantities, i.e., ~xd[i] and ud[i], to estimate Ad and~bd. We know
this equation holds for i = 0, . . . , 3 so we will “stack” the equations together as follows:

~xd[4]
~xd[3]
~xd[2]
~xd[1]

 =


~xd[3] ud[3]
~xd[2] ud[2]
~xd[1] ud[1]
~xd[0] ud[0]


[

A>d
~b>d

]
(61)
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xd,1[4] xd,2[4]
xd,1[3] xd,2[3]
xd,1[2] xd,2[2]
xd,1[1] xd,2[1]

 =


xd,1[3] xd,2[3] ud[3]
xd,1[2] xd,2[2] ud[2]
xd,1[1] xd,2[1] ud[1]
xd,1[0] xd,2[0] ud[0]


[

A>d
~b>d

]
(62)

Substituting values in, we get that D and S are:
5 9 0
4 6 1
7 8 0
2 3 −1


︸ ︷︷ ︸

D

P =


8 13
5 9
4 6
7 8


︸ ︷︷ ︸

S

(63)

Note that any permutations of these rows would constitute an acceptable answer, provided that
the rows of both D and S are permuted in the same way.

(b) (3 pts.) Suppose now that you want to solve for an estimate of A, the matrix in the continuous
system, using your estimate of Ad, the matrix in the discretized system. We will try this by first
looking at a scalar system.

Consider the scalar continuous time system in eq. (64) and its corresponding discretization with
xd[i] = x(i∆) and ud[i] = u(i∆) in eq. (65).

d
dt

x(t) = λ︸︷︷︸
a

x(t) + bu(t) (64)

xd[i + 1] = eλ∆︸︷︷︸
ad

xd[i] +
eλ∆ − 1

λ
b︸ ︷︷ ︸

bd

ud[i] (65)

You know ad ≈ eλ∆ by system identification. Express a in terms of ad and ∆.

Solution: We know that, in this instance, λ = a. Hence,

ad = ea∆ (66)

ln(ad) = a∆ (67)

a =
ln(ad)

∆
(68)

(c) (5 pts.) Let’s return to the original matrix-vector system. It is true that if A can be diagonalized

as A = VΛV−1, then Ad = VΛdV−1. Suppose Λd has entries

[
ad,1 0
0 ad,2

]
. Using the entries of

Λd, solve for Λ, the matrix of eigenvalues of A. Then, express A in terms of V, V−1, ad,1, ad,2,
and ∆.

(HINT: Use your result from part (b) to express the entries of Λ in terms of the entries of Λd.)

Solution: We will define ~y(t) to be the representation of ~x(t) in the eigenbasis of Ad. In other
words, ~y(t) = V−1~x(t). Similarly, we have that ~yd[i] = V−1~xd[i]. By applying diagonalization to
this problem, we have the following two continuous and discrete time systems respectively:

d
dt
~y(t) = Λ~y(t) + V−1~bu(t) (69)
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~yd[i + 1] = Λd~yd[i] + V−1~bdud[i] (70)

We know Λd, and we know it is diagonal, so we can view this as two separate, scalar system

ID problems. We can denote Λ =

[
Λ11 0

0 Λ22

]
, ~y(t) =

[
y1(t)
y2(t)

]
, and ~yd[i] =

[
yd,1[i]
yd,2[i]

]
. The two

system ID problems would be

d
dt

y1(t) = Λ11y1(t) +
(

V−1~b
)

1
u(t) (71)

yd,1[i + 1] = ad,1yd,1[i] +
(

V−1~bd

)
1
ud[i] (72)

and

d
dt

y2(t) = Λ22y2(t) +
(

V−1~b
)

2
u(t) (73)

yd,2[i + 1] = ad,2yd,2[i] +
(

V−1~bd

)
2
ud[i] (74)

Pattern matching the results from the previous part, we have

Λ =

 ln(ad,1)
∆ 0

0
ln(ad,2)

∆

 (75)

Thus,

A = V

 ln(ad,1)
∆ 0

0
ln(ad,2)

∆

V−1 (76)
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