
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2022
Final

Exam Location: Draft

PRINT your student ID:

PRINT AND SIGN your name: ,
(last) (first) (sign)

PRINT your discussion sections and (u)GSIs (the ones you attend):

Row Number: Seat Number:

Name and SID of the person to your left:

Name and SID of the person to your right:

Name and SID of the person in front of you:

Name and SID of the person behind you:

1. Honor Code (0 pts.)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow
the rules and do this exam on my own.

Note that if you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution: Any attempt to copy the honor code and sign should get full points.

2. What are you planning to do during your summer break? (2 pts.)

Solution: Any answer is sufficient.

3. What’s your favorite thing about Berkeley so far? (2 pts.)

Solution: Any answer is sufficient.

Do not turn this page until the proctor tells you to do so.
You can work on the above problems before time starts.
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4. SVD and the fundamental subspaces (8 pts.)

Consider a matrix A ∈ Rm×n with rank(A) = r. The compact SVD of A is given by A = UrΣrV>r
where

Ur =
[
~u1 · · ·~ur

]
∈ Rm×r, Σr =


σ1

. . .

σr

 ∈ Rr×r, Vr =
[
~v1 · · ·~vr

]
∈ Rn×r

with σ1 ≥ · · · ≥ σr > 0 being the singular values of A.

(a) (2 pts.) Which one of the following sets is always guaranteed to form an orthonormal basis
for Col(A)? (Please fill in one of the circles for the options below. You will only be graded on your final
answer.)

i. {~u1, · · · ,~ur}
ii. {σ1~u1, . . . , σr~ur}

iii. {~v1, . . . ,~vr}
iv. {σ1~v1, . . . , σr~vr}

Option i ii iii iv

Answer © © © ©

Solution: Only options i. and ii. form bases for Col(A). Since the question is asking for an
orthonormal basis the correct answer is i.

(b) (2 pts.) Which one of the following sets is always guaranteed to form an orthonormal basis
for Col(A>)? (Please fill in one of the circles for the options below. You will only be graded on your final
answer.)

i. {~u1, · · · ,~ur}
ii. {σ1~u1, . . . , σr~ur}

iii. {~v1, . . . ,~vr}
iv. {σ1~v1, . . . , σr~vr}

Option i ii iii iv

Answer © © © ©

Solution: Only options iii. and iv. form bases for Col(A>). Since the question is asking for an
orthonormal basis the correct answer is iii.

Now suppose that the considered A matrix has the following compact SVD components:

Ur =


0 1√

2
1 0
0 1√

2

 , Σr =

[
2 0
0 1

]
, Vr =

1 0
0 1
0 0

 .

(c) (2 pts.) Using the given compact SVD, state α, where α is the tightest upper bound ‖A~x‖ ≤ α

for any ~x such that ‖~x‖ ≤ 1.

Solution: The largest amplification factor of a matrix is given by its largest singular value. Thus
for A this is 2.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 2
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(d) (2 pts.) Given the compact SVD, which of the following provides a valid full SVD for A =

UΣV>? (Please fill in one of the circles for the options below. You will only be graded on your final
answer.)

i. U =


0 1√

2
1√
2

1 0 0
0 1√

2
− 1√

2

 , Σ =

1 0 0
0 2 0
0 0 0

 , V =

1 0 0
0 1 0
0 0 1



ii. U =


0 1√

2
0

1 0 −1
0 1√

2
0

 , Σ =

2 0 0
0 1 0
0 0 0

 , V =

1 0 0
0 1 0
0 0 1



iii. U =


0 1√

2
1√
2

1 0 0
0 1√

2
− 1√

2

 , Σ =

2 0 0
0 1 0
0 0 0

 , V =

1 0 −1
0 1 1
0 0 0



iv. U =


0 1√

2
1√
2

1 0 0
0 1√

2
− 1√

2

 , Σ =

2 0 0
0 1 0
0 0 0

 , V =

1 0 0
0 1 0
0 0 1


Option i ii iii iv

Answer © © © ©

Solution: Only option iv. forms a valid SVD as it has orthonormal U and V matrices and has
strictly positive singular values ordered from largest to smallest in the Σ matrix.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 3
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5. SVD of a matrix with orthogonal columns (4 pts.)

Let A =
[
~a1 · · · ~an

]
∈ Rm×n where~a>i ~aj = 0 for all 1 ≤ i, j ≤ n such that i 6= j, and~a>i ~ai 6= 0 for

all i = 1, . . . , n. What is the set of singular values of A for all such matrices A?

(Please fill in one of the circles for the options below. You will only be graded on your final answer.)

(a) {0} (all zero)

(b) {
√
‖~a1‖, . . . ,

√
‖~an‖}

(c) {‖~a1‖, . . . , ‖~an‖}

(d) {‖~a1‖2, . . . , ‖~an‖2}

(e) {1} (all one)

Option a b c d e

Answer © © © © ©

Solution: (c). The singular values of A are the square roots of the eigenvalues of A>A. Evaluating
this, we have

A>A =


~a>1

...
~a>n

 [~a1 · · · ~an

]
(1)

=


~a>1 ~a1 · · · ~a>1 ~an

...
. . .

...
~a>n~a1 · · · ~a>n~an

 (2)

=


‖~a1‖2 · · · 0

...
. . .

...
0 · · · ‖~an‖2

 (3)

Since this is a diagonal matrix, we can read off its eigenvalues as ‖~a1‖2, . . . , ‖~an‖2. Then the singular
values of A are {‖~a1‖, . . . , ‖~an‖} (note that we ask for the set of singular values in the question because
singular values are specified in order of decreasing size).

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 4
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6. Finding the line that closely fits the data (4 pts.)

Consider the following matrix A that contains three two-dimensional datapoints:

A =

[
1 2 −3
−2 3 −1

]
. (4)

The matrix A has two distinct singular values: σ1 =
√

21 and σ2 =
√

7.

Below is a plot of the datapoints in the 2-D plane, where the x-axis corresponds to the first entry and
the y-axis to the second entry of each column. We would like to fit the line y = αx that minimizes the
squared sum of perpendicular distances to the datapoints as follows:

y = αx

x

y

1

−2

2

3

−3

−1

Figure 1: Visualization for perpendicular distance minimization.

Find α, using the left singular vectors of matrix A. Show your work.

(Please fill in one of the circles for the options below.)

(a) α =
√

3/2

(b) α = 7/6

(c) α = 2

(d) α = 1

Option a b c d

Answer © © © ©

Solution: The line y = αx that minizes the perpendicular distance will represent the first left singular
vector of A.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 5
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To find the first left singular vector, we can find the eigenvector of AA> that corresponds to the largest
singular value σ1 =

√
21:

AA>~u = λ~u (5)

Where λ = σ2
1 = 21.

Plugging in, we have

AA>~u =

[
1 2 −3
−2 3 −1

]  1 −2
2 3
−3 −1

~u (6)

=

[
14 7
7 14

]
~u (7)

λ~u = 21~u (8)

Solving for ~u gives ~u = c

[
1
1

]
.

Checking the slope of y = αx, we can conclude that α = 1.

Option a b c d

Answer © © © •

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 6
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7. Least squares with repeated columns (4 pts.)

Consider the following matrix A and vector~b:

A =

 0 0 2
−1 −1 1
1 1 1

 , b =

1
0
1

 (9)

We want to find a solution for the following least squares problem:

argmin
~x∈R2

∥∥∥A~x−~b
∥∥∥2

(10)

However, we cannot use the least squares solution ~xLS = (A>A)−1 A>b, since A>A is not invertible
due to the repeated columns in A.

We provide a compact SVD of A:

A = UrΣrV>r =

2/
√

6 0
1/
√

6 −1/
√

2
1/
√

6 1/
√

2

 [√6 0
0 2

] [
0 0 1

1/
√

2 1/
√

2 0

]
. (11)

Find a solution for the least squares problem using the Moore-Penrose pseudoinverse.

Solution: A solution for the least squares problem argmin~x∈R2

∥∥∥A~x−~b
∥∥∥2

can be found as following:

~x∗ = A†b (12)

= VrΣ−1
r U>r b (13)

=

0 1/
√

2
0 1/

√
2

1 0

 [1/
√

6 0
0 1/2

] [
2/
√

6 1/
√

6 1/
√

6
0 −1/

√
2 1/

√
2

] 1
0
1

 (14)

=

0 1/
√

2
0 1/

√
2

1 0

 [2/6 1/6 1/6
0 −1/2

√
2 1/2

√
2

] 1
0
1

 (15)

=

 0 −1/4 1/4
0 −1/4 1/4

2/6 1/6 1/6


1

0
1

 (16)

=

1/4
1/4
1/2

 (17)

Note that the solution is also the minimum norm solution.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 7
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8. Matching systems to time responses (4 pts.)

Consider the following four different 2-D systems ~x(t):

System 1:
d
dt
~x(t) =

[
2 3
1 4

]
~x(t), (18)

System 2:
d
dt
~x(t) =

[
2 −1
1 4

]
~x(t) (19)

System 3:
d
dt
~x(t) =

[
1 −1
2 4

]
~x(t) (20)

System 4:
d
dt
~x(t) =

[
0 −1
1 2

]
~x(t) (21)

where ~x(t) ∈ R2 with initial condition ~x(0) =

[
4
−1

]
.

We provide the following possible solutions for ~x(t):

(a)

[
15
4 et + 1

4 e5t

− 5
4 et + 1

4 e5t

]

(b)

[
4et + 3

√
2tet

−et − 3
√

2tet

]

(c)

[
4e3t − 3

√
2te3t

−e3t + 3
√

2te3t

]

(d)

[
7e2t − 3e3t

−7e2t + 6e3t

]

Each system has one matching solution from the above choices.

For each system, fill in the circle that matches the correct solution. (You will only be graded on your
final answer.)

Option a b c d

System 1 © © © ©

Option a b c d

System 2 © © © ©

Option a b c d

System 3 © © © ©

Option a b c d

System 4 © © © ©

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 8
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Solution: Checking the eigenvalues of coefficient matrix of each system, we have:

System 1: λ = 1, 5 (22)

System 2: λ = 3 (23)

System 3: λ = 2, 3 (24)

System 4: λ = 1 (25)

Matching the corresponding exponential terms in the solution choices, the answer should be as fol-
lows.

Option a b c d

System 1 • © © ©

Option a b c d

System 2 © © • ©

Option a b c d

System 3 © © © •

Option a b c d

System 4 © • © ©

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 9
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9. Properties of rotation matrices (8 pts.)

Consider the 2× 2 matrix

R =

[
cos α − sin α

sin α cos α

]
(26)

(a) (2 pts.) Show that matrix R is orthonormal.

Solution: To show that R is an orthonormal matrix it suffices to show that R>R = RR> = I.

(b) (2 pts.) Consider some vector ~x ∈ R2 with norm ‖~x‖. Show that ‖R~x‖ = ‖~x‖.
Solution: Since R has been shown to be orthonormal, we can conclude that an orthonormal
transformation has the property of preserving the norm, i.e. ‖R~x‖ = ‖~x‖. Alternatively, we can
also show this result without knowing this property and simply using the fact that R>R = I:

‖R~x‖2 = ~x>R>R~x = ~x>~x = ‖~x‖2 =⇒ ‖R~x‖ = ‖~x‖ .

(c) (4 pts.) Consider arbitrary real vectors ~a,~b and let β within interval 0 ≤ β ≤ π be the angle
between them. The inner product for this pair of vectors can be related to angle β via the expres-
sion a>b = ‖~a‖

∥∥∥~b∥∥∥ cos β. Now consider vectors ~x, ~y ∈ R2 and define θ1 to be the angle between

them. Let ~̃x = R~x and ~̃y = R~y and denote θ2 to be the angle between ~̃x and ~̃y. Show that θ1 = θ2,
i.e. the angle between two vectors is preserved after an orthonormal transformation. (HINT:
You may use the inner product expression given at the start of this part as well as results from parts a) and
b).)

Solution: From the hint, we know that

~̃x
>
~̃y =

∥∥∥~̃x∥∥∥ ∥∥∥~̃y∥∥∥ cos θ2

= ‖~x‖ ‖~y‖ cos θ2

where the last line follows from the result of part b).
We also know that

~̃x
>
~̃y = (R~x)> R~y

= ~x>R>R~y

= ~x>~y

= ‖~x‖ ‖~y‖ cos θ1

where we used that R>R = I due to the orthonormality of R.
Putting the results together, we have that

‖~x‖ ‖~y‖ cos θ2 = ‖~x‖ ‖~y‖ cos θ1 =⇒ cos θ1 = cos θ2.

Since the angles in this problem are restricted between 0 and π, we can conclude that in fact
θ1 = θ2.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 10
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10. Inner product with a Hermitian matrix (8 pts.)

Recall that a matrix A ∈ Cn×n is Hermitian if A∗ = A, where A∗ denotes the conjugate transpose of A.
We will show that A ∈ Cn×n is Hermitian if and only if for all ~x,~y ∈ Cn, 〈A~x,~y〉 = 〈~x, A~y〉.

(a) (3 pts.) Assume that A ∈ Cn×n is Hermitian. Show that for all ~x,~y ∈ Cn, 〈A~x,~y〉 = 〈~x, A~y〉.
Solution: We have

〈A~x,~y〉 = ~y∗A~x (27)

= ~y∗A∗~x (28)

= (A~y)∗~x (29)

= 〈~x, A~y〉 (30)

(b) (5 pts.) Let A ∈ Cn×n. Assume that for all ~x,~y ∈ Cn, 〈A~x,~y〉 = 〈~x, A~y〉. Now we want to
show that this implies A = A∗. Let aij and ãij be the elements of A and A∗ respectively. Pick
appropriate vectors ~x and ~y to show that aij = ãij for all 1 ≤ i, j ≤ n.

Solution: We have

〈A~x,~y〉 = ~y∗A~x (31)

〈~x, A~y〉 = (A~y)∗~x (32)

= ~y∗A∗~x (33)

By assumption, ~y∗A~x = ~y∗A∗~x are the same for all ~x,~y ∈ Cn.

Picking ~x = ej and ~y = ei gives us

~y∗A~x = ~y∗A∗~x (34)

=⇒ ~e∗i A~ej = ~e∗i A∗~ej (35)

=⇒ aij = ãij (36)

as desired.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 11



EECS 16B Final
PRINT your name and student ID:

2022-06-17 22:07:09-07:00

11. Adaptive cruise control (20 pts.)

Consider a vehicle traveling with speed v(t) > 0 in a road lane behind a “lead” vehicle traveling with
constant speed vL. Denote the distance to the lead vehicle by h(t) and the torque input to the follower
vehicle with u(t), as shown in Fig. 2:

v(t) vL

h(t)

Figure 2: Vehicles for adaptive cruise control.

Then a simplified model for h(t) and v(t) is

d
dt

h(t) = vL − v(t) (37)

d
dt

v(t) = a− bv(t)2 + cu(t) (38)

where a, b, c are the appropriate coefficients with b > 0 and c > 0. We wish to maintain a given
relative distance, h∗ > 0, between the vehicles.

(a) (3 pts.) Find the values of v∗ and u∗ that form a valid operating point.

Solution: If v∗, u∗ is an operating point, then they satisfy

0 = vL − v∗ (39)

0 = a− bv2
∗ + cu∗ (40)

From the first equation here, we get that v∗ = vL. From the second equation, we get

cu∗ = −a + bv2
∗ (41)

u∗ = −
a
c
+

b
c

v2
∗ (42)

= − a
c
+

b
c

v2
L (43)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12
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(b) (5 pts.) The linearization of the system about (v∗, u∗) takes the following form:

d
dt

[
δh(t)
δv(t)

]
=

[
a11 a12

a21 a22

] [
δh(t)
δv(t)

]
+

[
b1

b2

]
δu(t) (44)

where δh(t) := h(t)− h∗, δv(t) := v(t)− v∗, and δu(t) := u(t)− u∗. Find the values of a11, a12,
a21, a22, b1, and b2.

For reference, the system is

d
dt

h(t) = vL − v(t)

d
dt

v(t) = a− bv(t)2 + cu(t)

Solution: Let f1 := vL − v(t) and f2 := a − bv(t)2 + cu(t), so we can write f :=

[
f1

f2

]
. Let

~x :=

[
h
v

]
. Then

J~x f =

[
0 −1
0 −2bv

]
(45)

Ju f =

[
0
c

]
(46)

so

Jx f (~x∗, u∗) =

[
0 −1
0 −2bv∗

]
(47)

Ju f (~x∗, u∗) =

[
0
c

]
. (48)

Then

d
dt

[
δh(t)
δv(t)

]
= J~x~f (~x∗, u∗)

[
δh(t)
δv(t)

]
+ Ju~f (~x∗, u∗)δu(t) (49)

=

[
0 −1
0 −2bv∗

] [
δh(t)
δv(t)

]
+

[
0
c

]
δu(t) (50)

so

a11 = 0

a12 = −1

a21 = 0

a22 = −2bv∗

b1 = 0

b2 = c.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13
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(c) (12 pts.) Suppose that for some values of a, b, c, and vL, the linearization about some operating
point (v∗, u∗) is

d
dt

[
δh(t)
δv(t)

]
=

[
0 −1
0 −4

] [
δh(t)
δv(t)

]
+

[
0
1

]
δu(t) (51)

Suppose we apply the feedback law

u(t) = u∗ + k1(h(t)− h∗) + k2(v(t)− v∗), (52)

which means
δu(t) = k1 δh(t) + k2 δv(t) (53)

What are the ranges of the feedback gains k1 and k2 that asymptotically stabilize this lin-
earized model?

Solution: Applying the feedback law, our system becomes

d
dt

[
δh(t)
δv(t)

]
=

[
0 −1
0 −4

] [
δh(t)
δv(t)

]
+

[
0
1

]
δu(t) (54)

=

[
0 −1
0 −4

] [
δh(t)
δv(t)

]
+

[
0
1

] [
k1 k2

] [δh(t)
δv(t)

]
(55)

=

[
0 −1
k1 −4 + k2

] [
δh(t)
δv(t)

]
(56)

Let A :=

[
0 −1
k1 −4 + k2

]
. From the lectures, we know that this 2× 2 system is stable if and only

if det(A) > 0 and Tr(A) < 0. This corresponds to

det(A) = k1 > 0 (57)

Tr(A) = −4 + k2 < 0 =⇒ k2 < 4 (58)

Alternatively, we can calculate the eigenvalues of the matrix to obtain this result. Let α1 := k1

and α2 := −4 + k2 so

A =

[
0 −1
α1 α2

]
(59)

Then the eigenvalues of A are given by

λ1 =
α2 −

√
α2

2 − 4α1

2
(60)

λ2 =
α2 +

√
α2

2 − 4α1

2
(61)

If α1 ≤ 0 then α2 +
√

α2
2 − 4α1 ≥ α2 +

√
α2

2 = α2 + |α2| ≥ 0, so λ2 > 0.

If α2 ≥ 0, we consider when α2
2 − 4α1 < 0 and when α2

2 − 4α1 ≥ 0. If α2
2 − 4α1 < 0 then√

α2
2 − 4α1 is imaginary and Re(λ1) = Re(λ2) = α2

2 ≥ 0. If α2
2 − 4α1 ≥ 0 then

√
α2

2 − 4α1 > 0
and λ2 ≥ α2

2 ≥ 0.

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14
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If α1 > 0 and α2 < 0, we consider when α2
2− 4α1 < 0 and when α2

2− 4α1 ≥ 0. If α2
2− 4α1 < 0 then√

α2
2 − 4α1 is imaginary and Re(λ1) = Re(λ2) =

α2
2 < 0. If α2

2− 4α1 ≥ 0 then 0 ≤ α2
2− 4α1 < |α2|.

Then

λ1 =
α2 −

√
α2

2 − 4α1

2
≤ α2

2
< 0 (62)

λ2 =
α2 +

√
α2

2 − 4α1

2
<

α2 + |α2|
2

≤ 0 (63)

Thus we require α1 > 0 and α2 < 0 for the system to be stable. This corresponds to

α1 = k1 > 0 (64)

α2 = −4 + k2 < 0 =⇒ k2 < 4 (65)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 15
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12. Minimum-norm input to an RC circuit (20 pts.)

Consider the following circuit in Fig. 3 used to turn on a light-emitting diode (LED):

−

+
vin(t)

R

iR(t)

C
+

−
vC(t)

iC(t)

1V

Figure 3: Circuit to turn on LED.

The LED turns on when the NMOS gate voltage vC(t) sufficiently exceeds its threshold voltage. For
this problem, let’s say we require vC(t) ≥ 0.5 V for both the NMOS and the LED to turn on.

The voltage source can generate any continuous-time function vin(t) you desire. The resistor R models
the wire resistance, and the capacitor C models the NMOS gate capacitance.

Assume vin(t) = 0 for t < 0 and vC(t) = 0 for t < 0. Your goal is to turn on the LED while minimizing
the norm (energy) of the source voltage vin(t).

(a) (3 pts.) Use KCL to find the continuous-time differential equation for vC(t) with an arbitrary
input voltage vin(t). Write your answer in the form

d
dt

vC(t) = AvC(t) + Bvin(t) (66)

and solve for the coefficients A and B.

Solution: With the labeled branch currents on the diagram:

iR =
vin(t)− vC(t)

R
(67)

iC = C
d
dt

vC(t) (68)

By KCL, we have:
iR = iC

=⇒ vin(t)− vC(t)
R

= C
d
dt

vC(t)

=⇒ d
dt

vC(t) = −
1

RC
vC(t) +

1
RC

vin(t)

and therefore:

A = − 1
RC

(69)
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B =
1

RC
(70)

© UCB EECS 16B, Spring 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 17



EECS 16B Final
PRINT your name and student ID:

2022-06-17 22:07:09-07:00

(b) (5 pts.) Regardless of your previous result, define x(t) := vC(t) and u(t) := vin(t) and assume
the continuous-time differential equation is of the form:

d
dt

x(t) = λx(t)− λu(t) (λ < 0) (71)

We can discretize this equation assuming a zero-order hold and a uniform sampling period ∆.
That is, assuming the discrete forms of x(t) and u(t) are xd[i] and ud[i] respectively, where

xd[i] = x(i∆) for i = 0, 1, 2, ... (72)

u(t) = ud[i] for t ∈ [i∆, (i + 1)∆) (73)

we can write the discrete-time difference equation as

xd[i + 1] = Adxd[i] + Bdud[i] (74)

Solve for Ad and Bd in terms of λ and ∆. Assume that xd[0] = 0.

Solution: Recall from Lecture 11 notes, if our continuous-time system is of the form:

d
dt

x(t) = λ︸︷︷︸
Ac=λ

x(t) + b︸︷︷︸
Bc=b

u(t) (75)

then this can be discretized as:

xd[i + 1] = Adxd[i] + Bdud[i] (76)

where

Ad = eλ∆, (77)

Bd =

b eλ∆−1
λ , λ 6= 0

b∆, λ = 0
(78)

Therefore, we can map our problem:

d
dx

(t) = λ︸︷︷︸
Ac=λ

x(t) + (−λ)︸ ︷︷ ︸
Bc=b=−λ

u(t)

=⇒ xd[i + 1] = eλ∆xd[i] + b(
eλ∆ − 1

λ
)ud[i]

=⇒ xd[i + 1] = eλ∆xd[i] + (−λ)(
eλ∆ − 1

λ
)ud[i]

=⇒ xd[i + 1] = eλ∆xd[i] + (1− eλ∆)ud[i]

and therefore by inspection:

Ad = eλ∆ (79)

Bd = 1− eλ∆ (80)
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(c) (10 pts.) Regardless of your previous result, assume that for the rest of this problem our discrete-
time difference equation is:

xd[i + 1] = Adxd[i] + Bdud[i] (81)

with
Ad = e−0.1 and Bd = 0.1 (82)

Let us define our target voltage as X? := 0.5 V. We would like xd[i] to reach X? such that our
LED turns on in ` discrete-time steps using an input sequence ud[0], ud[1], . . . , ud[`− 1]. We can
model this as a control problem with a 1×` controllability matrix at timestep ` as:

C` =
[

A(`−1)
d Bd · · · AdBd Bd

]
(83)

such that

X? =
[

A(`−1)
d Bd · · · AdBd Bd

]


ud[0]
...

ud[`− 2]
ud[`− 1]

 (84)

Find the minimum-norm sequence for the input ud, i.e. find ud[i] such that ||~ud||2 = ∑`−1
i=0 |ud[i]|2

is minimized.

To simplify your arithmetic, use:

C`C>` =
1
20

(1− e−0.2`) (85)

Solution: If we consider the input sequence as a vector~ud[`] =
[
ud[i]

]>
i=0...`−1

, then the minimum-
norm input sequence is the solution to:

ud[0]
...

ud[`− 2]
ud[`− 1]

 = C†
` X? (86)

where C†
` is the pseudo-inverse of the controllability matrix C`, i.e. C†

` = C>` (C`C>` )
−1. There-

fore: 
ud[0]

...
ud[`− 2]
ud[`− 1]

 = C>` (C`C>` )
−1X? (87)

We are given C`C>` = 1
20 (1− e−0.2`), therefore (C`C>` )

−1 = 20
1−e−0.2` :

We can then solve for our input sequence vector:
ud[0]

...
ud[`− 2]
ud[`− 1]

 = C†
` X? (88)
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= C>` (C`C>` )
−1X? (89)

=


c`−1

...
c1

c0

 (
20

1− e−0.2` )(0.5) (90)

=
10

1− e−0.2`


0.1e−0.1(`−1)

...
0.1e−0.1

0.1

 (91)

=
1

1− e−0.2`


e−0.1(`−1)

...
e−0.1

1

 (92)

By pattern matching, we can solve for ud[i] for any arbitrary discrete-time index i, as desired:

ud[i] =
1

1− e−0.2` e−0.1(`−1−i) (93)
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(d) (2 pts.) Assume we want our LED to turn on at target time t = T?. Beyond that time, the status
of the LED is irrelevant, so we turn off our source u(t) for t > T?.

In the table below, select the closest continuous-time input source voltage u(t) which corre-
sponds to the minimum-norm solution. Assume the axes in the plots are all to the same scale.
You will only be graded on your final answer.

Option I II III IV

Answer © © © ©

T?

t

u(t)

(I)

T?

t

u(t)

(II)

T?

t

u(t)

(III)

T?

t

u(t)

(IV)

Solution: From the discrete-time solution we found earlier:

ud[i] =
1

1− e−0.2` e−0.1(`−1−i) (94)

=
1

1− e−0.2` e−0.1(`−1)e0.1i (95)

we observe qualitatively that this has a positive exponential dependence on the discrete-time
index i. We would expect this dependence to map directly to the continuous-time variable t.
Therefore, the continuous-time solution should have a positive exponential dependence as well.
Intuitively, the natural decay in the circuit means the earlier input voltages have a less signif-
icant impact on our present output voltage, so we can "de-emphasize" the earlier portion and
concentrate our input later in time. Therefore, Plot II is the correct answer.
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Option I II III IV

Answer © • © ©
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13. Polyphase electricity (20 pts.)

Large electric grids such as PG&E generate and distribute not 1 but 3 AC voltages offset by certain
phases. This helps efficiently deliver constant power to power-hungry motors in machines of large
buildings, such as elevators.

To understand why 3-phase power is used, let’s first consider a 1-phase system.

We can model an elevator’s motor in a 1-phase system as simply a load resistor RM. The motor
is plugged into a common wall outlet which supplies an AC voltage v(t) = VS cos(2π f t) from the
generator through the power transmission lines (“hot” and “neutral”), as shown below. Note that
ground is defined at the generator, not at the load.

−

+
v1(t) = VS cos(2π f t)

i(t)

RM

+

−

vM(t)

i(t)

HOT

NEUTRAL

1-Phase Generator 1-Phase Motor

Ground at generator

Figure 5: 1-phase power.

(a) (1 pts.) What is the current i(t) flowing through the neutral line as a function of time? Write your
answer in terms of VS, RM, and f .

Solution:
i(t) =

v(t)
RM

=
VS cos(2π f t)

RM
=

VS

RM
cos(2π f t) (96)

(b) (2 pts.) Instantaneous electrical power consumed by the motor, pM(t), is defined as:

pM(t) = vM(t)i(t) (97)

where vM(t) and i(t) are the voltage and current across the motor (following passive sign con-
vention, as drawn).

The instantaneous power pM(t) consumed by the 1-phase motor may be written in the form
A + B cos(2πCt), where A, B, and C are real numbers. Find A, B, and C in terms of VS, RM, and
f .

(HINT: cos2 x = 1
2 (1 + cos 2x))

Solution:

pM(t) = vM(t)iM(t) (98)
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=
v2

M(t)
RM

(99)

=
(VS cos(2π60t)V)2

RM
(100)

=
V2

S
RM

[
1
2
(1 + cos(2π × 2 f t))

]
(101)

=
V2

S
2RM

+
V2

S
2RM

cos(2π × 2 f t) (102)

Therefore:

A =
V2

S
2RM

(103)

B =
V2

S
2RM

(104)

C = 2 f (105)

Note that pM(t) varies across time, i.e. it is not constant.

You should have found that a 1-phase system does not deliver constant power to the elevator
motor, resulting in an uneven ride. To fix this, Nikola Tesla was awarded a US patent in 1888
proposing multi-phase power. The simplest case, 2-phase power, is shown below. The voltage
sources in a 2-phase generator are phase shifted by 90◦, i.e.

v1(t) = VS cos(2π f t) (106)

v2(t) = VS cos(2π f t− 90◦) = VS sin(2π f t) (107)

−

+
v1(t)

−

+
v2(t) RM RM

iN(t)

i2(t)

i1(t)

NEUTRAL

2-Phase Generator 2-Phase Motor

Figure 6: 2-phase power.
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(c) (5 pts.) The two-phase motor’s instantaneous power is defined as p(t) = p1(t) + p2(t), where
p1(t) is the power consumed by branch/phase 1 and p2(t) is the power consumed by branch/phase
2.

What is the 2-phase motor’s total instantaneous consumed power p(t) in terms of VS, RM, and
f ?

(HINT: cos2 x + sin2 x = 1) Solution: It’s easier to do this calculation without directly includ-
ing the currents:

p(t) = p1(t) + p2(t) (108)

= v1(t)i1(t) + v2(t)i2(t) (109)

= v1(t)(
v1(t)

R1
) + v2(t)(

v2(t)
R2

) (110)

=
v2

1(t)
R1

+
v2

2(t)
R2

(111)

=
v2

1(t)
RM

+
v2

2(t)
RM

(112)

=
V2

S
RM

[
cos2(2π f t) + sin2(2π f t)

]
(113)

=
V2

S
RM

(1) (114)

=
V2

S
RM

(115)

Note that p(t) is constant over time.

(d) (5 pts.) Now let’s use phasors to determine the time-domain neutral current iN(t) for a 2-phase
system.

i. What are the phasors Ṽ1 and Ṽ2 for the voltage sources v1(t) and v2(t), respectively? Write
your answers in terms of VS. Solution:

Ṽ1 =
VS

2
ej0 =

VS

2
=

VS

2
∠0◦ (116)

Ṽ2 =
VS

2
ej(−90◦) =

VS

2
e−j π

2 = −j
VS

2
=

VS

2
∠− 90◦ (117)

Any of the above forms is correct.

ii. What are the phasor Ĩ1 and Ĩ2 for the currents currents i1(t) and i2(t), respectively? Write
your answers in terms of VS and RM. Solution:

Ĩ1 =
Ṽ1

RM
=

VS
2 ∠0◦

RM
=

VS

2RM
∠0◦ (118)

Ĩ2 =
Ṽ2

RM
=

VS
2 ∠− 90◦

RM
=

VS

2RM
∠− 90◦ (119)

Any of the above forms is correct.

iii. The neutral current in a 2-phase system can be written in the form iN(t) = A cos(2πBt + C).
Find A, B, and C in terms of VS, RM, and f . Solution: By KCL in the phasor domain:

ĨN = Ĩ1 + Ĩ2 (120)
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=
VS

2RM
∠0◦ +

VS

2RM
∠− 90◦ (121)

=

√
2VS

2RM
∠− 45◦ (122)

Converting ĨN to the time domain:

iN(t) = Re
{

2 ĨNej2π f t
}

(123)

= Re

{
2×
√

2VS

2RM
∠− 45◦ej2π f t

}
(124)

=

√
2VS

RM
cos(2π f t− 45◦) (125)

Therefore,

A =

√
2VS

RM
(126)

B = f (127)

C = −45◦ = −π

4
(128)

C may be expressed in degrees or radians as above.
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In the early 1900s, electrical engineers at Westinghouse and General Electric proposed a 3-phase
distribution method, shown below. One advantage of this 3-phase system is that it delivers 1.5×
the constant power compared to a 2-phase system. The 3 generator voltage sources are separated
by 120◦ phase shifts, as defined:

v1(t) = VS cos(2π f t) (129)

v2(t) = VS cos(2π f t− 120◦) (130)

v3(t) = VS cos(2π f t− 240◦) (131)

(132)

−

+
v1(t)

−

+
v2(t)

−

+
v3(t) RM RM RM

iN(t)

NEUTRAL
(needed?)

i3(t)

i2(t)

i1(t)

3-phase Generator 3-Phase Motor

Figure 7: 3-phase power.

(e) (7 pts.) In addition to higher constant power delivery, proponents of the 3-phase system claimed
the neutral return wire was not required. This potentially reduces the cost connecting an extra
transmission line throughout the power grid. Is this claim true? Justify your answer by finding
iN(t) as a function of time.

Solution: Yes, this is true: iN(t) = 0 ∀t, so there is no need for the neutral return conductor.

To show this, we conduct KCL at the neutral node:

iN(t) = i1(t) + i2(t) + i3(t) (133)

Analyzing these currents in the phasor domain:

ĨN = Ĩ1 + Ĩ2 + Ĩ3 (134)

=
Ṽ1

RM
+

Ṽ2

RM
+

Ṽ3

RM
(135)
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=
1

RM
(

VS

2
∠0◦ +

VS

2
∠− 120◦ +

VS

2
∠− 240◦) (136)

=
VS

2RM
(1∠0◦ + 1∠− 120◦ + 1∠− 240◦) (137)

Notice that 1∠0◦, 1∠− 120◦, and 1∠− 240◦ are phasors of unit length and rotated around the
unit circle symmetrically such that their vector sum is 0. In other words:

ĨN =
VS

2RM
(~0) (138)

=~0 (139)

Therefore:

iN(t) = Re
{

2 ĨNej2π f t
}

(140)

= Re{0} (141)

= 0 (142)

The ability of 3-phase power to deliver constant power to (balanced 3-phase) loads while not
requiring a neutral return line is its main advantage over the 2-phase counterpart. This led to the
3-phase system dominating over 2-phase systems in modern power grids worldwide.
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14. Dynamical system approach to solving Ridge Regression (16 pts.)

In this problem, we will derive a dynamical system based approach to solving a modified version
of the least-squares problem, commonly known as "ridge regression". This problem attempts to find
the ~x that minimizes ‖A~x−~y‖2 + λ ‖~x‖2. Here we assume A ∈ Rm×n is full column rank and scalar
λ ≥ 0.

The solution to the ridge regression problem is

~̂x = (A>A + λI)−1 A>~y. (143)

Note that this solution is quite similar to the solution of least-squares. In many cases, direct compu-
tation of the solution to ridge regression is too slow, because it requires computing the matrix inverse
(A>A+ λI)−1, which is generally very costly for A with very large dimensions. We will instead solve
the problem iteratively by using an update rule which turns this particular problem into an analysis
of a particular discrete-time state-space dynamical system.

(a) (2 pts.) We first connect the ridge regression problem to the familiar ordinary least-squares prob-
lem. State the condition on λ in (143) needed to recover the least squares solution.

Solution: In ridge regression the solution is~̂x = (A>A+ λI)−1 A>~y. By setting λ = 0 we recover
the formula to compute the solution for least-squares.

(b) (3 pts.) Using (143), show that (A>A + λI)~̂x− A>~y = 0.

Solution: We are given that for ridge regression, the solution is of the form ~̂x = (A>A +

λI)−1 A>~y. Plugging this into the left-hand side of the equation that we want to prove, we get

(A>A + λI)~̂x− A>~y = (A>A + λI)(A>A + λI)−1 A>~y− A>~y = A>~y− A>~y = 0.
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(c) (5 pts.) In iterative optimization schemes, we will get a sequence of estimates for ~̂x at each
timestep. Let ~x[i] denote our estimate for ~̂x at timestep i.
In this problem we will consider the following update rule for solving the ridge regression prob-
lem:

~x[i + 1] = ~x[i]− α
(
(A>A + λI)~x[i]− A>~y

)
(144)

that gives us an updated estimate ~x[i + 1] using the previous one ~x[i]. Here α is the "step size" in
our update rule which controls how much we update our solution estimate at each time step. For
the purposes of this problem, it doesn’t matter where we got the update rule, but the important
thing to note is that if ~x[i] = ~̂x, then by the previous part, ~x[i + 1] = ~̂x and the system remains in
equilibrium at ~̂x for all time.
To show that ~x[i]→ ~̂x, we define a new state variable ∆~x[i] = ~x[i]−~̂x. It represents the deviation
from where we want to be.

Derive the discrete-time state evolution equation for ∆~x[i], and show that it takes the form:

∆~x[i + 1] = (I − αG)∆~x[i]. (145)

What is G?

Solution:

∆~x[i + 1] = ~x[i + 1]−~̂x (146)

= ~x[i]− α
(
(A>A + λI)~x[i]− A>~y

)
−~̂x (147)

= (~x[i]−~̂x)− α
(
(A>A + λI)~x[i]− A>~y

)
(148)

= ∆~x[i]− α
(
(A>A + λI)~x[i]− A>~y

)
(149)

= ∆~x[i]− α
(
(A>A + λI)~x[i]− (A>A + λI)~̂x

)
(150)

= ∆~x[i]− α(A>A + λI)∆~x[i] (151)

=
(

I − α(A>A + λI)
)

∆~x[i] (152)

So G = A>A + λI.
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(d) (3 pts.) We would like to select α such that ∆~x[i] converges to 0. In particular, we want to make
sure that we have a stable system. To do this, we need to understand the eigenvalues of I − αG.
Given that λk{G} are the eigenvalues of G, for k ∈ {1, 2, . . . , n} what are the eigenvalues of
the matrix I− αG? (Please fill in one of the circles for the options below. You will only be graded on your
final answer.)

i. 1− αλk{G} for k ∈ {1, 2, . . . , n}
ii. αλk{G} for k ∈ {1, 2, . . . , n}

iii. 1− λk{G} for k ∈ {1, 2, . . . , n}
iv. 1 + αλk{G} for k ∈ {1, 2, . . . , n}

Option i ii iii iv

Answer © © © ©

Solution: Suppose that (λk{G},~vk{G}) is an eigenvalue-eigenvector pair for G. Then

(I − αG)~vk{G} = ~vk{G} − αG~vk{G} = ~vk{G} − αλk{G}~vk{G} = (1− αλk{G})~vk{G}. (153)

Hence, the eigenvalues of I − αG are 1− αλk{G}.

(e) (3 pts.) For system (145) to be stable, we need all the eigenvalues of I − αG to have magnitudes
that are smaller than 1 (since this is a discrete-time system). State the condition on α that would
ensure that system (145) is stable. You may assume that λk{G} are real and λk{G} > 0 for
k ∈ {1, 2, . . . , n}.
Solution: For stability, we require that |1− αλk{G}| < 1 for k ∈ {1, 2, . . . , n}. This is equivalent
to the condition −1 < 1− αλk{G} < 1 for k ∈ {1, 2, . . . , n}. Isolating the α term we obtain the
condition 0 < α < 2

λk{G}
for k ∈ {1, 2, . . . , n}.
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