
EECS 16B Designing Information Systems and Devices II UC Berkeley Fall 2022
Midterm

1. Honor Code (0 pts.)

Please copy the following statement in the space provided below and sign your name.

As a member of the UC Berkeley community, I act with honesty, integrity, and respect for others. I will follow
the rules and do this exam on my own.

Note that if you do not copy the honor code and sign your name, you will get a 0 on the exam.

Solution: Any attempt to copy the honor code and sign should get full points.

2. What are you planning to do after the midterm? (2 pts.)

Solution: Any answer is sufficient.

3. What’s your favorite thing to do in Berkeley? (2 pts.)

Solution: Any answer is sufficient.
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4. Capacitor and Inductor Basics (20 pts.)

(a) (4 pts.) What is the capacitance of the following parallel plate capacitor? The permittivity of
the material is known to be 10−10 F

m , the dimensions of the larger face of the plate is 2 µm by
3 µm, and the thickness of the insulator is 1 µm.

Solution: The capacitance is given by

C = ε
A
d

= 10−10 6× 10−12

1× 10−6 = 6× 10−16F (1)
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(b) (8 pts.) A capacitance and its voltage with respect to time is shown below. Qualitatively sketch
the

i. Current

ii. Power

as functions of time. When you are qualitatively sketching, you may define your own axes and
scaling. The sketches you make do not have to be to scale. The important part is to note the
general shape of the curve – you do not have to denote exact values on your coordinate axes.
Feel free to use the blank axes below.

+

−

vC(t)

i(t)

C = 4 µF

(a) Capacitor Circuit
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(b) Plot of vC(t)
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Solution: The shapes of the plots of current and power should roughly resemble the plots below,
respectively:
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Mathematical Derivation of Plots (OPTIONAL):
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We can write the voltage as a piecewise function of time, namely:

vC(t) =


30t 0 ≤ t ≤ 0.1

−30t + 6 0.1 ≤ t ≤ 0.3

30t− 12 0.3 ≤ t ≤ 0.4

(2)

Using this, we can compute i(t) = C dvC(t)
dt which is written as follows

i(t) =


30× 4× 10−6 = 0.12× 10−3 0 ≤ t ≤ 0.1

−30× 4× 10−6 = −0.12× 10−3 0.1 ≤ t ≤ 0.3

30× 4× 10−6 = 0.12× 10−3 0.3 ≤ t ≤ 0.4

(3)

To find the power, we pointwise multiply i(t) and vC(t) which yields

p(t) =


3.6t 0 ≤ t ≤ 0.1

3.6t− 0.72 0.1 ≤ t ≤ 0.3

3.6t− 1.44 0.3 ≤ t ≤ 0.4

(4)
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(c) (8 pts.) At t = 0, an inductor L = 1 µH which was carrying a current of 1 mA is connected across
a resistor, R = 1 kΩ. Find the expression for current through the inductor as a function of time,
and find the total energy that will be dissipated through the resistor.

(HINT: Remember, E =
∫

P dt.)

R = 1 kΩ

t ≥ 0

L = 1 µH I = 1 mA

t ≥ 0

Figure 2: Sample Inductor Circuit

Solution: We know that the voltage drop across the inductor will be the negative of the volt-
age drop across the resistor (by KVL), so vL(t) = −i(t)R. Furthermore, we know that, for an
inductor, di(t)

dt = vL(t)
L , so we have

di(t)
dt

= −i(t)
R
L

(5)

di(t)
i(t)

= −R
L

dt (6)∫ i(t)

i(0)

di
i
=
∫ t

0
−R

L
dt′ (7)

ln
(

i(t)
i(0)

)
= −R

L
t (8)

i(t) = i(0)e−
R
L t = 10−3e−109t (9)

The power dissipated by the resistor is (i(t))2R = 10−3e−2×109t. Integrating from t = 0 to ∞, we
get

E =
∫ ∞

0
(i(t))2R dt =

∫ ∞

0
10−3e−2×109t dt = 10−3 × 0.5× 10−9 = 0.5× 10−12J (10)
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5. The Inevitable RLC Circuit (20 pts.)

Suppose you are given the following RLC Circuit as shown in fig. 3. VDC is some unknown DC
voltage.

−
+VDC

R1

R2 L C

+

−

vC(t)

Figure 3

(a) (8 pts.) Show that the differential equation that describes the voltage across the capacitor vC(t)
as a function of time can be written as

d2vC(t)
dt2 + M

dvC(t)
dt

+ NvC(t) = 0 (11)

where M and N are constants that may include R1, R2, L, and C.

Solution: Suppose we label our circuit in the following way, following passive sign convention:

−
+VDC

R1

+ −
vR1(t)

iR1(t)

R2

+

−

vR2(t)

iR2(t)

L

+

−

vL(t)

iL(t)

C

+

−

vC(t)

iR1(t)

+

−

vC(t)

Figure 4: Labeled RLC Circuit

Writing out KCL, we have:
iR2(t) + iL(t) + iC(t) = iR1(t) (12)

Writing the element equations, we get:

iR1(t) =
vR1(t)

R1
(13)
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iR2(t) =
vR2(t)

R2
(14)

iL(t) =
1
L

∫ t

t0

vL(t′) dt′ + iL(t0) (15)

iC(t) = C
dvC(t)

dt
(16)

If we plug in nodal voltages into our equations, we get:

iR1(t) =
VDC − vC(t)

R1
(17)

iR2(t) =
vC(t)

R2
(18)

iL(t) =
1
L

∫ t

t0

vC(t′) dt′ + iL(t0) (19)

iC(t) = C
dvC(t)

dt
(20)

Then substituting into our original KCL equation, we get:

VDC − vC(t)
R1

=
vC(t)

R2
+

1
L

∫ t

t0

vC(t′) dt′ + iL(t0) + C
dvC(t)

dt
(21)

Then, we take the time derivative of the whole equation to get a pure differential equation. Then
simplify to our "standard form":

d
dt

[
vC(t)

R2
+

1
L

∫ t

t0

vC(t′) dt′ + iL(t0) + C
dvC(t)

dt

]
=

d
dt

[
VDC

R1
− vC(t)

R1

]
(22)

1
R2

dvC(t)
dt

+
1
L

vC(t) + C
d2vC(t)

dt2 = − 1
R1

dvC(t)
dt

(23)

C
d2vC(t)

dt2 +

(
1

R2
+

1
R1

)
dvC(t)

dt
+

1
L

vC(t) = 0 (24)

d2vC(t)
dt2 +

(
R1 + R2

CR1R2

)
︸ ︷︷ ︸

M

dvC(t)
dt

+
1

LC︸︷︷︸
N

vC(t) = 0 (25)
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(b) (8 pts.) Suppose that, if you were to plug in appropriate values of R1, R2, L, and C, you arrive at
the following differential equation:

d2vC(t)
dt2 + 109 dvC(t)

dt
+ 1018vC(t) = 0 (26)

Solve this differential equation to derive an expression for vC(t). Note that your solution
should consider both homogeneous and particular solutions. The solution can also contain con-
stants to be determined from initial conditions (no initial conditions have been specified for this
problem).

What is the steady state solution for vC(t)?

Solution: Here, we have a second order differential equation. We know that the solution for
vC(t) will be the sum of the particular/steady state and homogeneous/complementary solu-
tions:

vC(t) = vC,p(t) + vC,h(t) (27)

where vC,p(t) is the particular solution and vC,h(t) is the homogeneous solution.

To solve for the homogeneous solution, we will look at the values of our damping coefficient (α),
damping ratio (ζ), and undamped resonant frequency (ω0).

For the damping coefficient, we have that

2α =
R1 + R2

CR1R2
(28)

α =
2× 103 + 2× 103

2(10−12)(2× 103)(2× 103)
(29)

α = 5× 108 (30)

For the undamped resonant frequency, we get

ω2
0 =

1
LC

(31)

ω0 =

√
1

10−6 × 10−12 (32)

ω0 =
√

1018 (33)

ω0 = 109 (34)

Since we have α < ω, our damping ratio is ζ = α
ω0

= 5e8
1e9 = 0.5. Therefore, we have a un-

derdamped system where our roots are complex. Thus, our complementary solution is in the
form:

vC,h(t) = K1e−αt cos (ωnt) + K2e−αt sin (ωnt) (35)

Solving for ωn, which is the natural frequency, we have:

ωn =
√

ω2
0 − α2 (36)

ωn =
√
(109)2 − (5× 108)2 (37)

ωn =
√

1018 − 25× 1016 (38)

ωn =
√

75× 1016 (39)
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ωn = 5
√

3× 108 (40)

Therefore, our complementary solution can be written as

vC,h(t) = K1e−5×108t cos
(

5
√

3× 108t
)
+ K2e−5×108t sin

(
5
√

3× 108t
)

(41)

where K1 and K2 are constants that can be solved for using initial conditions.

We can use DC steady state analysis to determine our particular solution. Recall that in DC
steady state, our current and voltages are constant and therefore, their derivatives with respect
to time are equal to 0. Thus, for a capacitor, we have iC(t) = C dvC(t)

dt = 0 A and can be treated as
an open circuit, whereas an inductor we have vL(t) = L dvL(t)

dt = 0, meaning that we treat it as a
short circuit or wire.

Redrawing our RLC Circuit, we have:

−
+VDC

R1

R2

+

−

vL(t) = 0

iC(t) = 0 +

−

vC(t)

Notice that vC(t) is connected directly to ground and thus vC,p(t) = 0. Therefore our general
solution just the homogeneous solution.

vC(t) = K1e−5×108t cos
(√

75× 108t
)
+ K2e−5×108t sin

(√
75× 108t

)
(42)

In steady state, we said that vC(t) = 0, which we can confirm by taking the limit as t → ∞ of
Equation eq. (42), which will go to 0. Thus, in steady state:

vC(t) = 0 (43)
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(c) (4 pts.) Qualitatively sketch vC(t) as a function of time t. When you are qualitatively sketching,
you may define your own axes and scaling. The important part is to note the general shape of the
curve – you do not have to denote exact values on your coordinate axes. In your qualitative plot,
indicate whether the function is decaying or increasing with time, and make sure to note other
important aspects of the function where applicable (e.g., oscillations, discontinuities, etc.).

Solution: We identified that the circuit is underdamped and therefore, we will have some oscil-
lation that will decay over time to 0 which is our steady state solution. Since the initial condition
wasn’t specified, the shape of the graph and its asymptotic behavior are the only things we care
about. The graph should contain the following two characteristics for full credit:

i. Some decaying oscillation representing an underdamped circuit

ii. A steady state of 0 V

Here is a sample solution that would receive full credit:

t

v C
(t
)
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6. Let’s Transfer to a Different Approach (15 pts.)

For this problem we will be using the same RLC circuit as the previous problem. It has been copied
below for your convenience in fig. 5.

−
+Vin(t)

R1 = 2 kΩ

R2 = 2 kΩ L = 1 µH C = 1 pF

+

−

Vout

Figure 5

(a) (8 pts.) For the circuit provided in fig. 5, find the transfer function H( f ) considering the two
port network indicated by the box in terms of R1, R2, L, C, f . Put your answer in the form

H( f ) =
1

k1 + jk2

(
f
f0
− f0

f

) (44)

where k1 and k2 are some real constants in terms of R1, R2, L, C and ω0 = 2π f0 = 1√
LC

.

Solution: Let’s start by converting the circuit into phasor domain, where sources are represented
as phasors and components represented by their impedances.

−
+VDC

ZR1 = R1

ZR2 = R2 ZL = jωL ZC = 1
jωC

+

−

vC(t)

Figure 6

The circuit can be simplified as

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 12
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−
+VDC

ZR1 = R1

ZP

+

−

vC(t)

Figure 7

where

1
ZP

=
1

R2
+

1
jωL

+ jωC (45)

Hence, from the voltage divider formula, we have

H( f ) =
Vout

Vin
(46)

=
ZP

ZP + R1
(47)

=
1

1 + R1
ZP

(48)

=
1

1 + R1
R2

+ jωR1C− jR1
ωL

(49)

=
1

1 + R1
R2

+ jR1Cω0

(
ω
ω0
− 1

ωLCω0

) (50)

=
1

1 + R1
R2

+ jR1Cω0

(
ω
ω0
− ω0

ω

) (51)

=
1

1 +
R1

R2︸ ︷︷ ︸
k1

+j R1Cω0︸ ︷︷ ︸
k2

(
f
f0
− f0

f

) (52)

(53)

Plugging in values for R1, R2, L, C, and ω0, we get

H( f ) =
1

2 + j2
(

2π f
109 + 109

2π f

) (54)

(b) (5 pts.) Find |H( f )| as f → ∞ and as f → 0. Then, find the value(s) of f for which |H( f )|
is maximized. Qualitatively sketch the magnitude of the transfer function as a function of
frequency ( f ). You may put your answers in terms of k1 and k2 if you wish. When you are
qualitatively sketching, you may define your own axes and scaling. The important part is to

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 13
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note the general shape of the curve – you do not have to denote exact values on your coordinate
axes. In your qualitative plot, make sure to indicate the behavior of |H( f )| as f → 0 and
f → ∞, and label the point in the graph where |H( f )| is maximized.

Solution: To start off, we can find the magnitude of the transfer function, i.e.,

H( f ) =
1

k1 + jk2

(
f
f0
− f0

f

) (55)

|H( f )| = 1∣∣∣k1 + jk2

(
f
f0
− f0

f

)∣∣∣ (56)

=
1√

k2
1 + k2

2

(
f 2− f 2

0
f f0

)2
(57)

It should be noted that

lim
f→0

(
f 2 − f 2

0
f f0

)2

= ∞ (58)

and, similarly,

lim
f→∞

(
f 2 − f 2

0
f f0

)2

= ∞ (59)

Hence, lim
f→0
|H( f )| = 0 and lim

f→∞
|H( f )| = 0. To find where |H( f )| is maximized, we can find the

point where
(

f 2− f 2
0

f f0

)2
= 0. This happens when f − f0 = 0, or equivalently, f = f0. Plugging in

f0 = 109

2π and k1 = k2 = 2, the magnitude plot (on a log-log scale) would be

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 14
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Figure 8: Magnitude Plot Template
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(c) (2 pts.) Using the symbolic transfer function eq. (44), what is the dB magnitude of the transfer
function at a frequency of f = f0? Write your answer in terms of k1 and k2, and you do not need
to simplify your answer fully.

Solution: Plugging in f = f0 into eq. (44), we get

H( f0) =
1

k1 + jk2(1− 1)
=

1
k1

(60)

Hence, the magnitude is

|H( f0)| =
1
k1

(61)

Recall the the dB magntitude of a transfer function is 20 log10 |H( f )|, so 20 log10 |H( f0)| =

20
(
log10 1− log10 k1

)
= −20 log10 k1.
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7. Power is a Complex Topic (15 pts.)

Once again, we are considering the following RLC Circuit with the provided values for R1, R2, L, C.

−
+Vin(t)

R1 = 2 kΩ

R2 = 2 kΩ L = 1 µH C = 1 pF

+

−

Vout

Figure 9

(a) (10 pts.) Now, let’s say that the circuit is being driven by a voltage source where

Vin(t) = 2 cos
(

109t + 30◦
)

(62)

i. Calculate the real power P.
(HINT: First, find the resonant frequency.)
Solution: Note that the resonant frequency is ω0 = 1√

LC
= 1√

10−610−12 = 109. Since ω = ω0,
the reactive impedances will sum to 0 (see Lecture 8, Slide 10). This means that the total
resistance will be the series resistance of the two resistors (since the indcutor and capacitor
are purely reactive components), so Rtotal = 4× 103Ω. Notice also that Vm = 2. Thus,

P =
V2

m
2Rtotal

=
22

2× 4× 103 = 0.5× 10−3W (63)
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ii. Calculate the reactive power Q.
Solution: From the previous part, we know that there is no reactive impedance, so the reac-
tive power is Q = 0.

iii. Calculate the power factor and comment on the relative magnitude of the real and reactive
powers.
Solution: From the power triangle concept, we have

cos(θ) =
P√

P2 + Q2
(64)

=
P
P
= 1 (65)

so θ = 0◦.

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 18
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(b) (5 pts.) Consider the following circuit in fig. 10. It is known that when VGS = 1 V, IDS = 1 mA
whereas when VGS = 0 V, IDS = 10−9 A.

D
IDS

RL = 1 kΩ

VDD

Vout

S
G

Vin

Figure 10: NMOS Transistor Circuit

Given that VDD = 1 V and the graph for Vin(t) is shown in fig. 11a, sketch Vout as a function of
time t on the plot provided in fig. 11b.
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(a) Plot of Vin(t)
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(V
)

(b) Plot of Vout(t)

Solution: Notice that Vout(t) = VDD− IDSRL by rearranging Ohm’s Law for RL. We are told that
when VGS = 1 V or when Vin = 1 V, the current is IDS = 1 mA. Therefore, when Vin = 1 V, we
have that

Vout(t) = 1− 10−3 × 103 = 0 V (66)

On the contrary, when VGS = 0 V or when Vin = 0 V, the current is IDS = 10−9 A. Therefore,
when Vin = 0 V, we have"

Vout(t) = 1− 10−9 × 103 = 1− 10−6 V ≈ 1 V (67)

Plotting this, we get:

© UCB EECS 16B, Fall 2022. All Rights Reserved. This may not be publicly shared without explicit permission. 19
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(a) Plot of Vin(t)
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(b) Plot of Vout(t)
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8. Least Squares, Uncertainty, and Safety (30 pts.)

Suppose we have some two dimensional, discrete time system of the form

~x[i + 1] =

[
a11 a12

a21 a22

]
︸ ︷︷ ︸

A

~x[i] +

[
b1

b2

]
︸︷︷︸
~b

u[i] (68)

where a11, a12, a21, a22, b1, b2 are all unknown, real numbers. For ease of notation, let us denote ~x[i] :=[
x1[i]
x2[i]

]
.

(a) (5 pts.) Let’s say we wanted to estimate these parameters using system ID. Upon applying some
control inputs, we observe the following data:

i x1[i] x2[i] u[i]
0 1 0 2

1 3.41 2.41 1

2 9.95 8.95 3

3 30.97 29.97 7

4 96.86 95.86 3

5 291.71 290.71 3

Set up a least squares problem to solve for the unknowns, i.e., a11, a12, a21, a22, b1, b2. Then,
symbolically describe how to solve the least squares problem. Note: you do not need to actu-
ally perform any matrix computations.

Solution: We notice that a11x1[i] + a12x2[i] + b1u[i] = x1[i + 1] and a21x1[i] + a22x2[i] + b2u[i] =
x2[i + 1]. We know values for x1[i], x2[i], u[i], x1[i + 1], x2[i + 1] for i = 0, 1, . . . , 4, so we can
combine these into a single least squares problem as follows:

x1[0] x2[0] u[0]
x1[1] x2[1] u[1]
x1[2] x2[2] u[2]
x1[3] x2[3] u[3]
x1[4] x2[4] u[4]


a11 a21

a12 a22

b1 b2

 ≈


x1[1] x2[1]
x1[2] x2[2]
x1[3] x2[3]
x1[4] x2[4]
x1[5] x2[5]

 (69)

where, if we were to plug in numbers, we would obtain
1 0 2

3.41 2.41 1
9.95 8.95 3

30.97 29.97 7
96.86 95.86 3


︸ ︷︷ ︸

S

a11 a21

a12 a22

b1 b2


︸ ︷︷ ︸

D

≈


3.41 2.41
9.95 8.95

30.97 29.97
96.86 95.86

291.71 290.71


︸ ︷︷ ︸

P

(70)

To solve this least squares problem, we notice that the columns of S are not linearly dependent,
so we can write

D̂ =
(

S>S
)−1

S>P (71)

where D̂ is our estimate for D.
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(b) (8 pts.) Regardless of your answer to the previous part, suppose that, when solving the least
squares problem, we obtained the following values of A and~b:

A =

[
−1 −2
−2 −1

]
(72)

~b =

 1√
2

1√
2

 (73)

This gives us the following discrete time system:

~x[i + 1] =

[
−1 −2
−2 −1

]
~x[i] +

 1√
2

1√
2

 u[i] (74)

Diagonalize the system to obtain

~xλ[i + 1] = Λ~xλ[i] +~̃bu[i] (75)

where Λ is diagonal and ~xλ[i] is the representation of ~x[i] in the eigenbasis of A.

(HINT: You may want to use the fact that the eigenvectors of A are 1√
2

[
1
1

]
and 1√

2

[
−1
1

]
.)

Solution: Based on the hint, we can immediately say that V = 1√
2

[
1 −1
1 1

]
, and by computing

inverses, we have V−1 = 1√
2

[
1 1
−1 1

]
. As a result, we can say that ~xλ[i] = V−1~x[i]. Fur-

thermore, based on the hint, we can compute the eigenvectors as A

(
1√
2

[
1
1

])
= −3√

2

[
1
1

]
and

A

(
1√
2

[
−1
1

])
= 1√

2

[
−1
1

]
. Thus, we can say that Λ =

[
−3 0
0 1

]
. It remains to find ~̃b, which we

find by computing

~̃b = V−1~b =

(
1√
2

[
1 1
−1 1

])(
1√
2

[
1
1

])
=

[
1
0

]
(76)

(c) (2 pts.) Is the system in eq. (74) stable? Explain your answer.

Solution: No, there is an eigenvalue with magnitude greater than 1 (there is an eigenvalue equal
to 3), so the system is not stable.
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(d) (15 pts.) Regardless of your answers to the previous parts, suppose that we could write

~xλ[i] =

[
λi

1xλ1 [0]
λi

2xλ2 [0]

]
+

i−1

∑
j=0

[
λ

i−1−j
1 u[j]

0

]
(77)

Let’s say that, based on our error in our estimate for least squares, we knew that 2 ≤ λ1 ≤ 4 and
0 ≤ λ2 ≤ 2. Now, suppose that your initial state is ~xλ[0] = ~0, and that you want to uniformly
bound your control inputs u[j] for j = 0, . . . , i− 1, so that

∣∣xλ1 [i]
∣∣+ ∣∣xλ2 [i]

∣∣ ≤ k. In other words,
find a ε > 0 such that, if |u[j]| ≤ ε for j = 0, . . . , i− 1, then

∣∣xλ1 [i]
∣∣+ ∣∣xλ2 [i]

∣∣ ≤ k. Your value of ε

may depend on i and k.

(HINT: You may use the triangle inequality, i.e., |∑n
i=1 ai| ≤ ∑n

i=1 |ai|. You may also use the geometric
series formula, i.e., ∑n−1

i=0 ri = 1−rn

1−r .)

Solution: Since ~xλ[0] =~0, we can write

~xλ[i] =
i−1

∑
j=0

[
λ

i−1−j
1 u[j]

0

]
(78)

so xλ1 [i] = ∑i−1
j=0 λ

i−1−j
1 u[j] and xλ2 [i] = 0. Now, let |u[j]| ≤ ε for j = 0, . . . , i− 1. Thus, we have

that

∣∣xλ1 [i]
∣∣+ ∣∣xλ2 [i]

∣∣ ≤ i−1

∑
j=0

∣∣∣λi−1−j
1

∣∣∣|u[j]| (79)

≤ ε
i−1

∑
j=0

λ
i−1−j
1 (80)

= ε

(
1− λi

1
1− λ1

)
(81)

≤ ε

(
4i − 1

3

)
(82)

Since we need this entire term to be ≤ k, we can choose ε = 3k
4i−1 .
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