
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Note 17: Linearization

1 Overview

Thus far, we have covered only linear control models. Let’s consider the models we have seen in this class
(without input for simplicity).

Discrete time:

x⃗[i + 1] = Ax⃗[i] (1)

x⃗[0] = x⃗0 (2)

Or continuous time:

d
dt

x⃗(t) = Ax⃗(t) (3)

x⃗(0) = x⃗0. (4)

However, many systems in the real world can only be faithfully represented by nonlinear models. A very
nonexhaustive list of such models follows.

1. Up until now, we have considered transistors to be binary – turning off or on at some voltage differ-
ential. But in reality, transistors work continuously, and the governing equations are highly nonlinear.

2. Robotics systems have in general highly nonlinear dynamics.

3. Machine learning and optimization also have highly nonlinear systems.

More generally, a nonlinear model takes the generic form of a difference equation or a differential equa-
tion, which we formally define here.

Model 1 (Discrete-Time Time-Invariant Difference Equation Model)

The model is of the form

x⃗[i + 1] = f⃗ (x⃗[i]) (5)

x⃗[0] = x⃗0 (6)

for x⃗ : N → Rn the state vector as a function of the timestep and f⃗ : Rn → Rn a function.

Model 2 (Continuous-Time Time-Invariant Differential Equation Model)

The model is of the form

d
dt

x⃗(t) = f⃗ (x⃗(t)) (7)

x⃗(0) = x⃗0 (8)

for x⃗ : R+ → Rn the state vector as a function of the timestep and f⃗ : Rn → Rn a function.

1

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

We will learn how to approximate these models locally by linear models, in a process called linearization
of the function f⃗ .

Key Idea 3 (Local Linearization)

Linearization of a function is the technique of approximating it by a linear function "locally" (i.e., in a
small region around some point).

2 Linearization

2.1 Linear Approximations

The key to linearization is the first derivative concept. Recall the familiar limit definition of the derivative for
a function f : R → R, i.e., f is differentiable at x⋆ with derivative f ′(x⋆) if and only if the following limit
exists and equality holds:

f ′(x⋆) = lim
x→x⋆

f (x)− f (x⋆)
x − x⋆

. (9)

Rearranging, we say that f is differentiable at x⋆ with derivative f ′(x⋆), if and only if the following limit
exists and equality holds:

0 = lim
x→x⋆

f (x)− [f (x⋆) + f ′(x⋆) · (x − x⋆)]
x − x⋆

(10)

The bracketed quantity
f̂ (x; x⋆) := f (x⋆) + f ′(x⋆) · (x − x⋆) (11)

is exactly the linearization, i.e., linear approximation of f around x⋆. The derivative eq. (10) says that for x
very close to x⋆, the linear approximation f̂ (x; x⋆) is almost exactly f (x).

x

f (x)
f̂ (x; x⋆)

This definition of the first derivative – i.e., an intercept f (x⋆) plus a linear function of x− x⋆ representing
the tangent plane – holds also for vector functions.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 2

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

Definition 4 (First Derivative, Jacobian)

Let f⃗ : Rp → Rq be a function. We say that f⃗ is differentiable at x⃗⋆ ∈ Rp with derivative J f⃗ (x⃗⋆) ∈ Rq×p

if and only if the following limit exists and equality holds:

0 = lim
x⃗→x⃗⋆

∥∥∥ f⃗ (x⃗)−
[

f⃗ (x⃗⋆) + J f⃗ (x⃗⋆) · (x⃗ − x⃗⋆)
]∥∥∥

∥x⃗ − x⃗⋆∥ (12)

We call J f⃗ (x⃗⋆) the Jacobian or derivative of f⃗ at x⃗⋆.
More formally, we define the Jacobian J f⃗ : Rp → Rq×p as the matrix-valued function which takes in
points x⃗⋆ ∈ Rp and outputs derivative matrices J f⃗ (x⃗⋆) ∈ Rq×p.
We say that f⃗ is differentiable if it is differentiable at every point x⃗⋆ ∈ Rp.

The bracketed quantity
⃗̂f (x⃗; x⃗⋆) := f⃗ (x⃗⋆) + J f⃗ (x⃗⋆) · (x⃗ − x⃗⋆) (13)

is exactly the best linear approximation of f⃗ around x⃗⋆. The derivative eq. (12) says that for x⃗ very close to

x⃗⋆, the linear approximation ⃗̂f (x⃗; x⃗⋆) is almost exactly f⃗ (x⃗).
This motivates the following definition of the best linear approximation, i.e., the linearization.

Definition 5 (Linearization)

Suppose f⃗ : Rp → Rq is differentiable. Then the linearization of f⃗ around x⃗⋆ ∈ Rp is the function
⃗̂f (·; x⃗⋆) : Rp → Rq given by

⃗̂f (x⃗; x⃗⋆) := f⃗ (x⃗⋆) + J f⃗ (x⃗⋆) · (x⃗ − x⃗⋆). (14)

2.2 Computing the Derivative

Now, we introduce a much more mechanical and easier way to compute the derivative.

Definition 6 (Partial Derivative)

Let f : Rp → R be differentiable. The partial derivative of f with respect to xi is the function ∂ f
∂xi

: Rp → R

defined by
∂ f
∂xi

(x⃗) := lim
h→0

f (x1, . . . , xi + h, . . . , xp)− f (x1, . . . , xp)

h
. (15)

This definition provides a way to compute the partial derivative.

Key Idea 7 (Computing Partial Derivatives)

To compute a partial derivative ∂ f
∂xi

:

• Write out f explicitly in terms of x1, . . . , xp.

• Pretend all variables xj are actually constants, except the variable xi.

• Take the single-variable derivative of f in xi.

The result will be the function ∂ f
∂xi

.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 3

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

We can now give an explicit formula for the Jacobian.

Theorem 8 (Jacobian in terms of Partial Derivatives)

Let f⃗ : Rp → Rq be differentiable at x⃗. Then the Jacobian at x⃗, J f⃗ (x⃗), is given by

J f⃗ (x⃗) =

∂ f1
∂x1

(x⃗) · · · ∂ f1
∂xp

(x⃗)
...

. . .
...

∂ fq
∂x1

(x⃗) · · · ∂ fq
∂xp

(x⃗)

 (16)

Just like a differentiable function f : R → R has exactly one derivative at a given point, a differen-
tiable function f⃗ : Rp → Rq has exactly one derivative at a given point. And so we can get an unique best
linearization using the Jacobian.

The main idea of the proof be obtained by only considering polynomial functions f : Rp → R. For
instance, consider the polynomial f (x1, x2) := (ax1 + bx2)

2. By the chain rule, we have:

∂ f
∂x1

(x1, x2) = 2a(ax1 + bx2)
∂ f
∂x2

(x1, x2) = 2b(ax1 + bx2). (17)

Fix a point x⃗⋆ ∈ R2 and a vector x⃗ which is close to x⃗⋆. Then

f (x⃗) = (ax1 + ax2)
2 (18)

= (ax⋆1 + a(x1 − x⋆1) + bx⋆2 + b(x2 − x⋆2))
2 (19)

= a2x⋆2
1 + 2abx⋆1 x⋆2 + b2x⋆2

2 (20)

+ 2a(ax⋆1 + bx⋆2)(x1 − x⋆1) + 2b(ax⋆1 + bx⋆2)(x2 − x⋆2) (21)

+ a2(x1 − x⋆1)
2 + 2ab(x1 − x⋆1)(x2 − x⋆2) + b2(x2 − x⋆2)

2 (22)

= f (x⋆1 , x⋆2) +
∂ f
∂x1

(x⋆1 , x⋆2) · (x1 − x⋆1) +
∂ f
∂x2

(x⋆1 , x⋆2) · (x2 − x⋆2) (23)

+ a2(x1 − x⋆1)
2 + 2ab(x1 − x⋆1)(x2 − x⋆2) + b2(x2 − x⋆2)

2. (24)

Now since x⃗ − x⃗⋆ is small, the quantities xi − x⋆i are small. Thus the quantities (xi − x⋆i)
2 and (xi − x⋆i)(xj −

x⋆j) are even smaller, so the whole last line is negligible and it is reasonable to consider the linear approxi-
mation

f (x⃗) ≈ f̂ (x⃗; x⃗⋆) := f (x⋆1 , x⋆2) +
∂ f
∂x1

(x⋆1 , x⋆2) · (x1 − x⋆1) +
∂ f
∂x2

(x⋆1 , x⋆2) · (x2 − x⋆2). (25)

Now this quantity can be expressed using the Jacobian, whose formula was explicitly given in Theorem 8.

f̂ (x⃗; x⃗⋆) = f (x⋆1 , x⋆2) +
[

∂ f
∂x1

(x⋆1 , x⋆2)
∂ f
∂x2

(x⋆1 , x⋆2)
] [x1 − x⋆1

x2 − x⋆2

]
= f (x⃗⋆) + J f (x⋆1 , x⋆2) · (x⃗ − x⃗⋆) (26)

which is exactly the linearization formula given in Definition 5.

3 Linearizing Models

Recall that we originally wanted to linearize state update functions f⃗ : Rn → Rn, that took in a state x⃗, and
output either a derivative d

dt x⃗(t) or a new state x⃗[i + 1]. To do this linearization, we introduce some new
notation for the Jacobian.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 4

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

Notation 9
Let f⃗ : Rn → Rn be differentiable. We define the Jacobian with respect to x⃗, i.e., J⃗x f⃗ : Rn → Rn×n as
being given by

J⃗x f⃗ (x⃗) :=

∂ f1
∂x1

(x⃗) · · · ∂ f1
∂xn

(x⃗)
...

. . .
...

∂ fn
∂x1

(x⃗) · · · ∂ fn
∂xn

(x⃗)

 (27)

(28)

Under this notation, we have the following linearization of the state update function f⃗ .

Key Idea 10 (Linearization of State Update Function)

Let f⃗ : Rn → Rm be differentiable. The linearization of f⃗ around x⃗⋆ is given by

̂⃗f (x⃗; x⃗⋆) := f⃗ (x⃗⋆) + J⃗x f⃗ (x⃗⋆) · (x⃗ − x⃗⋆) (29)

3.1 Linearization of Discrete-Time Time-Invariant Difference Equation Model

Recall that in the Discrete-Time Time-Invariant Difference Equation Model, the update rule is

x⃗[i + 1] = f⃗ (x⃗[i]). (30)

One may linearize f⃗ , but in order to do this, we need to pick a point x⃗⋆ to linearize around. We would like
the system dynamics to be well-behaved around x⃗⋆). This leads to the concept of equilibrium point.

Definition 11 (Equilibrium Point in Discrete-Time Time-Invariant Difference Equation Model)

In the Discrete-Time Time-Invariant Difference Equation Model, the point x⃗⋆ is an equilibrium point if
and only if

f⃗ (x⃗⋆) = x⃗⋆. (31)

In certain contexts this is also called an operating point.

Intuitively, x⃗⋆ can be interpreted as a stationary point of the system dynamics, in the following sense: if
the state starts at x⃗⋆ the state never leaves x⃗⋆.

Linearizing the right-hand side around some equilibrium point x⃗⋆ which is close to x⃗[i], we have

x⃗[i + 1] = f⃗ (x⃗[i]) (32)

≈ ⃗̂f (x⃗[i]; x⃗⋆) (33)

= f⃗ (x⃗⋆) + J⃗x f⃗ (x⃗⋆) · (x⃗[i]− x⃗⋆) (34)

= x⃗⋆ + J⃗x f⃗ (x⃗⋆) · (x⃗[i]− x⃗⋆) (35)

(36)

If we define the deviation from the equilibrium point

δx⃗[i] := x⃗[i]− x⃗⋆ (37)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 5

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

then the linearized equation becomes

δx⃗[i + 1] = J⃗x f⃗ (x⃗⋆) · δx⃗[i] (38)

is a linear system in δx⃗[i]. We can thus analyze its stability, controllability, and so on, using the tools we
already developed. We can even do feedback control! Keep in mind that in this system, driving δx⃗[i] to 0⃗n

(for instance via feedback stabilization) is equivalent to driving x⃗[i] to x⃗⋆. So, one thing we can do is to have
x⃗⋆ be the state we want to drive the model to, and then use feedback control to get there.

When we’re done, we can go back to the "real" state by setting x⃗[i] = δx⃗[i] + x⃗⋆.
We summarize our findings below.

Proposition 12 (Linearizing the Discrete-Time Time-Invariant Difference Equation Model)

Suppose (x⃗⋆) is an equilibrium point of the Discrete-Time Time-Invariant Difference Equation Model.
Define

δx⃗[i] := x⃗[i]− x⃗⋆ (39)

Then a linearization of Discrete-Time Time-Invariant Difference Equation Model results in the linear
model

δx⃗[i + 1] = J⃗x f⃗ (x⃗⋆) · δx⃗[i] (40)

for δx⃗[i] very small (i.e., x⃗[i] ≈ x⃗⋆).

Warning 13
The linearization is only valid when the state x⃗[i] is contained in a small neighborhood of the equilib-
rium point x⃗⋆.

3.2 Linearization of Continuous-Time Time-Invariant Differential Equation Model

The analysis of the continuous-time goes similarly to the discrete time, with a couple of crucial differences.
Recall that in the Continuous-Time Time-Invariant Differential Equation Model, the update rule is

d
dt

x⃗(t) = f⃗ (x⃗(t)). (41)

Again, we need to define equilibrium point.

Definition 14 (Equilibrium Point in Continuous-Time Time-Invariant Differential Equation Model)

In the Continuous-Time Time-Invariant Differential Equation Model, the point x⃗⋆ is an equilibrium
point if and only if

f⃗ (x⃗⋆) = 0⃗n. (42)

In certain contexts this is also called an operating point.

Intuitively, x⃗⋆ can be interpreted as a stationary point of the system dynamics, in the following sense: if
the state starts at x⃗⋆ the state never leaves x⃗⋆.

Linearizing the right-hand side around some equilibrium point x⃗⋆ which is close to x⃗(t), we have

d
dt

x⃗(t) = f⃗ (x⃗(t)) (43)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 6

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

≈ ⃗̂f (x⃗(t); x⃗⋆) (44)

= f⃗ (x⃗⋆) + J⃗x f⃗ (x⃗⋆) · (x⃗(t)− x⃗⋆) (45)

= J⃗x f⃗ (x⃗⋆) · (x⃗(t)− x⃗⋆) (46)

If we define the deviation from the equilibrium point

δx⃗(t) := x⃗(t)− x⃗⋆ (47)

then the linearized equation becomes

d
dt

δx⃗(t) ≈ J⃗x f⃗ (x⃗⋆) · δx⃗(t) (48)

is a linear system in δx⃗(t). We can thus analyze its stability, controllability, and so on, using the tools we
already developed. We can even do feedback control! Keep in mind that in this system, driving δx⃗(t) to
0⃗n (for instance via feedback stabilization) is equivalent to driving x⃗(t) to x⃗⋆. So, one thing we can do is to
have x⃗⋆ be the state we want to drive the model to, and then use feedback control to get there.

When we’re done, we can go back to the "real" state by setting x⃗(t) = δx⃗(t) + x⃗⋆.
We summarize our findings below.

Proposition 15 (Linearizing the Continuous-Time Time-Invariant Differential Equation Model)

Suppose x⃗⋆ is an equilibrium point of the Continuous-Time Time-Invariant Differential Equation
Model. Define

δx⃗(t) := x⃗(t)− x⃗⋆ (49)

Then a linearization of Continuous-Time Time-Invariant Differential Equation Model results in the
linear model

d
dt

δx⃗(t) = J⃗x f⃗ (x⃗⋆) · δx⃗(t) (50)

for δx⃗(t) very small (i.e., x⃗(t) ≈ x⃗⋆).

Warning 16
The linearization is only valid when the state x⃗(t) is contained in a small neighborhood of the equilib-
rium point x⃗⋆.

4 Examples

4.1 Circuit Example - Tunnel Diode

A tunnel diode is characterized by an I-V relationship where, for a certain voltage range, the current de-
creases with increasing voltage. (This is due to a quantum mechanical effect called tunneling).

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 7

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

+

−

vD

iD vD

iD

iD = g(vD)

Now consider the circuit below:

−
+vin(t)

+

−

vR(t)

+ −vL(t)

iL(t)

+

−

vC(t)

iC(t)

+

−

vD(t)

iD(t)

Using KVL and KCL, and the fact that iD(t) = g(vD(t)), we get the state model

d
dt

vC(t) = − 1
C

g(vC(t)) +
1
C

iL(t) (51)

d
dt

iL(t) = − 1
L

vC(t) +
R
L

iL(t)−
1
L

vin(t). (52)

Thus f⃗ is given by

f⃗ (vC, iL︸ ︷︷ ︸
=x⃗

, vin︸︷︷︸
=u

) =

[
− 1

C g(vC) +
1
C iL

− 1
L vC + R

L iL − 1
L vin

]
. (53)

To find an equilibrium point, we set f⃗ (v⋆C, i⋆L, v⋆in) to 0 (since this is an instance of Continuous-Time
Time-Invariant Differential Equation Model) and solve for v⋆C, i⋆L, and v⋆in. Indeed, we have the system of
equations

0 = − 1
C

g(vC(t)) +
1
C

iL(t) (54)

0 = − 1
L

vC(t) +
R
L

iL(t)−
1
L

vin(t). (55)

Solving, we get that the equilibrium point (v⋆C, i⋆L, v⋆in) is any triple which satisfies the equations

i⋆L = g(v⋆C) (56)

i⋆L =
v⋆C + v⋆in

R
. (57)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 8

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

To get further insight into equilibrium states of circuits, note that to solve for the equilibrium we set d
dt vC(t)

and d
dt iL(t) to 0. Since iC(t) = C dvC(t)

dt and vL(t) = L diL(t)
dt , we thus have that at equilibrium, iC(t) = 0 and

vL(t) = 0. Thus at equilibrium, the capacitor acts like an open circuit and the inductor like a short circuit.
Redrawing the circuit, this is the picture at equilibrium:

−
+v⋆in

+

−

vR(t)

iL(t)

+

−

vC(t)

+

−

vD(t)

iD(t)

We can linearize this new, simplified system to analyze small perturbations to vC, iL, vin from the equi-
librium states v⋆C, i⋆L, v⋆in.

4.2 Mechanics Example

Consider the following pendulum with mass m:

m

ℓ
θ

From physics we know that the equation of motion of this pendulum is governed by the differential
equation

mℓ
d2θ(t)

dt2 = −kℓ
dθ(t)

dt
− mg sin(θ(t)) (58)

where k is some air resistance coefficient. We define the state space variables

x1(t) := θ(t) x2(t) :=
d
dt

θ(t). (59)

This gives the nonlninear system

d
dt

x1(t) = x2(t) (60)

d
dt

x2(t) = −g
ℓ

sin(x1(t))−
k
m

x2(t) (61)

where g is the gravitational acceleration. Thus f⃗ is given by

f⃗ (x1, x2) =

[
x2

− g
ℓ sin(x1)− k

m x2

]
. (62)

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 9

EECS 16B Note 17: Linearization 2024-04-23 18:49:52-07:00

There are two distinct equilibrium points, which we get from setting f⃗ (x⋆1 , x⋆2) to 0 and solving:

(xdown
1 , xdown

2) = (0, 0) and (xup
1 , xup

2) = (π, 0) (63)

corresponding to the pendulum hanging completely downwards and staying completely upwards, respec-
tively. The Jacobian of f⃗ is given by

J f⃗ (x1, x2) =

[
0 1

− g
ℓ cos(x1) − k

m

]
. (64)

By evaluating the Jacobian at the equilibria, we get that

J f⃗ (xdown
1 , xdown

2) =

[
0 1
− g

ℓ − k
m

]
J f⃗ (xup

1 , xup
2) =

[
0 1
g
ℓ − k

m

]
. (65)

One can show that the eigenvalues of J f⃗ (xdown
1 , xdown

2) each have negative real part, so the linearized model
at (xdown

1 , xdown
2) is stable. On the other hand, there is an eigenvalue of J f⃗ (xup

1 , xup
2) with positive real part,

so the linearized model at (xup
1 , xup

2) is unstable. This corresponds with our physical intuition; if we shake
a pendulum which is somehow standing straight up, it will immediately fall over and hang downwards,
while if we shake a pendulum which is hanging downwards, it will move around a little but will eventually
return to hanging downwards.

5 Final Comments

In this note, we learned how to linearize functions, and specifically how to linearize nonlinear control mod-
els. Linearization is what makes linear control useful, since most physical systems are nonlinear and thus the
linear control model would not apply everywhere. Thus, linearization unlocks some rudimentary nonlin-
ear control, allowing us to use linear control methods on nonlinear models. This neatly closes the loop on
the controls picture we have developed.

Contributors:
• Druv Pai.
• Rahul Arya.
• Anant Sahai.
• Ashwin Vangipuram.

© UCB EECS 16B, Spring 2024. All Rights Reserved. This may not be publicly shared without explicit permission. 10

	Overview
	Linearization
	Linear Approximations
	Computing the Derivative

	Linearizing Models
	Linearization of ??
	Linearization of ??

	Examples
	Circuit Example - Tunnel Diode
	Mechanics Example

	Final Comments

