EECS 16B
 Designing Information Devices and Systems II

Profs. Miki Lustig and JP Tennant
Department of Electrical Engineering and Computer Science

Announcements

- HW 9 due date moved to Saturday $3 / 30$
- MT 2 covers lecture material through today
- student support meetings
- 15 minutes 1 -on-1 with course staff, any topic
- sign up after spring break

Today

- review
- spectral theorem
- minimum energy control

Stability

True or False: Given a system that is internally ("state space") stable, it must be BIBO stable as well.

1. True
2. False

Stability

True or False: Given a system that is internally ("state space") stable, it must be BIBO stable as well.

1. True
2. False

Stability

True or False: Given a system that is internally ("state space") unstable, it must be BIBO unstable as well.

1. True
2. False

Stability

True or False: Given a system that is internally ("state space") unstable, it must be BIBO unstable as well.

1. True
2. False

Stability

True or False: Given a system that is internally ("state space") marginally stable, it must be BIBO marginally stable as well.

1. True
2. False

Stability

True or False: Given a system that is internally ("state space") marginally stable, it must be BIBO marginally stable as well.

1. True
2. False

$$
x_{i+1}=\left[\begin{array}{cc}
-2 & -1 \\
0 & -3
\end{array}\right] x_{i}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{i}
$$

Is this system stable?

1. yes
2. no

$$
x_{i+1}=\left[\begin{array}{cc}
-2 & -1 \\
0 & -3
\end{array}\right] x_{i}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u_{i}
$$

Is this system controllable?

1. yes
2. no

Orthogonal Vectors and Matrices

Suppose the columns of matrix Q are orthonormal. Q could be:

1. a tall matrix
2. a square matrix
3. a wide matrix
4. either tall or square, but not wide
5. either wide or square, but not tall

Orthogonal Vectors and Matrices

Suppose the columns of matrix Q are orthonormal.

$$
Q^{\top} Q=?
$$

Orthogonal Vectors and Matrices

Suppose the columns of matrix Q are orthonormal.

$$
Q^{\top} Q=I
$$

Orthogonal Vectors and Matrices

Suppose the columns of matrix Q are orthonormal.

$$
Q Q^{\top}=?
$$

Orthogonal Vectors and Matrices

Suppose the columns of matrix Q are orthonormal.

$$
Q Q^{\top}=P
$$

Orthogonal Vectors and Matrices

Matrix Q is "orthogonal." The following must be true:

1. Q is square
2. the columns of Q are orthogonal
3. the columns of Q have norm $=1$
4. the rows of Q are orthonormal
5. all of the above

Gram-Schmidt

