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Linearization and Discrete-Time Systems

Linearization with Inputs

In the last lecture we considered nonlinear systems with no inputs
and linearized them by applying a Taylor approximation around an
equilibrium. We can also apply linearization to systems with inputs,

d
dt
~x(t) = f (~x(t),~u(t)),

around an equilibrium ~x∗ maintained by a constant input ~u∗ that
satisfies f (~x∗,~u∗) = 0.

Define the perturbation variables x̃(t) and ũ(t) as:

x̃(t) := ~x(t)−~x∗, ũ(t) := ~u(t)− ~u∗. (1)

Then,

d
dt

x̃(t) =
d
dt
~x(t)− d

dt
~x∗

=
d
dt
~x(t) = f (~x(t),~u(t)) = f (~x∗ + x̃(t),~u∗ + ũ(t))

≈ f (~x∗,~u∗) +∇x f (~x,~u)|~x∗ ,~u∗ x̃(t) +∇u f (~x,~u)|~x∗ ,~u∗ ũ(t) (2)

where

∇x f (~x,~u) :=


∂ f1(~x,~u)

∂x1

∂ f1(~x,~u)
∂x2

· · · ∂ f1((~x,~u)
∂xn

∂ f2(~x,~u)
∂x1

∂ f2(~x,~u)
∂x2

· · · ∂ f2((~x,~u)
∂xn

...
...

...
∂ fn(~x,~u)

∂x1

∂ fn(~x,~u)
∂x2

· · · ∂ fn(~x,~u)
∂xn



∇u f (~x,~u) :=


∂ f1(~x,~u)

∂u1

∂ f1(~x,~u)
∂u2

· · · ∂ f1((~x,~u)
∂um

∂ f2(~x,~u)
∂u1

∂ f2(~x,~u)
∂u2

· · · ∂ f2((~x,~u)
∂um

...
...

...
∂ fn(~x,~u)

∂u1

∂ fn(~x,~u)
∂u2

· · · ∂ fn(~x,~u)
∂um

 .

Substituting f (~x∗,~u∗) = 0 in (2) and defining

A := ∇x f (~x,~u)|~x∗ ,~u∗ B := ∇u f (~x,~u)|~x∗ ,~u∗ (3)
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we obtain the linearization:

d
dt

x̃(t) ≈ Ax̃(t) + Bũ(t).

Example 1: The velocity v(t) of a vehicle is governed by

M
d
dt

v(t) = −1
2

ρac v(t)2 +
1
R

u(t) (4)

where u(t) is the wheel torque, M is vehicle mass, ρ is air density, a is
vehicle area, c is drag coefficient, and R is wheel radius. Note that we
can maintain the velocity at a desired value v∗ if we apply the torque

u∗ =
R
2

ρac v∗2,

which counterbalances the drag force at that velocity. We rewrite the
model (4) as d

dt v(t) = f (v(t), u(t)), where

f (v, u) = − 1
2M

ρac v2 +
1

RM
u.

Then the linearized dynamics for the perturbation ṽ(t) = v(t)− v∗ is

d
dt

ṽ(t) = λṽ(t) + bũ(t), (5)

where ũ(t) = u(t)− u∗,

λ =
∂ f (v, u)

∂v

∣∣∣∣
v∗ ,u∗

= − 1
M

ρacv∗, b =
∂ f (v, u)

∂u

∣∣∣∣
v∗ ,u∗

=
1

RM
.

Here we used the letters λ and b instead of A and B to emphasize
that they are scalars. Note that if we apply u(t) = u∗, that is ũ(t) = 0,
then the solution of the scalar differential equation (5) is

ṽ(t) = ṽ(0)eλt,

which converges to 0 since λ < 0. This means that if v(t) is perturbed
from v∗, it will return2 to v∗. Equilibrium points with this property 2 The rate of convergence depends on

λ. For a typical sedan at v∗ = 29 m/s
(≈ 65 mph) we would get λ ≈ −0.01
sec−1 with parameters M = 1700 kg,
a = 2.6 m2, ρ = 1.2 kg/m3, c = 0.2.

are called stable, a concept we will study in detail later.

Example 2: In previous lectures we discussed the tunnel diode cir-
cuit on the right and obtained the state model:

d
dt

vC(t) =
1
C

iL(t)−
1
C

g(vC(t))

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) ,

(6)

R

+ vL −

iL

+
vin
−

L

C

iC
+
vC = vD
−

iD

where g is a nonlinear function representing the tunnel diode’s
voltage-current characteristics (see figure below). We also showed
that the equilibrium points are the intersections of the curves

iL = g(vC) and iL =
vin − vC

R
. (7)
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iL

vC

iL = g(vC)iL = vin−vC
R

Let v∗in be a constant input voltage and let (v∗C, i∗L) denote one of the
resulting equilibrium states, that is one of the intersections of the two
curves above. Since the right-hand side of (6) has the form

f (vC, iL, vin) =

[
f1(vC, iL, vin)

f2(vC, iL, vin)

]
=

[
1
C iL − 1

C g(vC)
1
L (−vC − RiL + vin)

]
,

the matrices A and B in (3) are:

A =

[
∂ f1(vC ,iL ,vin)

∂vC

∂ f1(vC ,iL ,vin)
∂iL

∂ f2(vC ,iL ,vin)
∂vC

∂ f2(vC ,iL ,vin)
∂iL

]∣∣∣∣∣
(v∗C ,i∗L)

=

[
−1
C g′(v∗C)

1
C

−1
L

−R
L

]

B =

[
∂ f1(vC ,iL ,vin)

∂vin
∂ f2(vC ,iL ,vin)

∂vin

]∣∣∣∣∣
(v∗C ,i∗L)

=

[
0
1
L

]
.

Discrete-Time Systems

In a discrete-time system, the state vector ~x(t) evolves according to a
difference equation rather than a differential equation:

~x(t + 1) = f (~x(t),~u(t)) t = 0, 1, 2, . . . (8)

Here f (~x,~u) is a function that gives the state vector at the next time
instant based on the present values of the states and inputs.

As in the continuous-time case, when f (~x,~u) ∈ Rn is linear in ~x ∈ Rn

and ~u ∈ Rm, we can rewrite it in the form

f (~x,~u) = A~x + B~u

where A is n× n and B is n×m. The state model is then

~x(t + 1) = A~x(t) + B~u(t). (9)

Example 3: Let s(t) denote the inventory of a manufacturer at the
start of the t-th business day. The inventory at the start of the next
day, s(t + 1), is the sum of s(t) and the goods g(t) manufactured,
minus the goods u1(t) sold on day t. Assuming it takes a day to do
the manufacturing, the amount of goods g(t) manufactured is equal
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to the raw material available the previous day, r(t − 1). The raw
material r(t) is equal to the order placed the previous day, u2(t− 1),
assuming it takes a day for the order to arrive.

The state variables s(t), g(t), r(t), thus evolve according to the model

s(t + 1) = s(t) + g(t)− u1(t)

g(t + 1) = r(t)

r(t + 1) = u2(t),

(10)

where u1 and u2 are two distinct inputs, one representing the cus-
tomer demand and the other the manufacturer’s raw material order.

Note that this system is linear, and we can write (10) as:s(t + 1)
g(t + 1)
r(t + 1)


︸ ︷︷ ︸
~x(t + 1)

=

1 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

s(t)
g(t)
r(t)


︸ ︷︷ ︸
~x(t)

+

−1 0
0 0
0 1


︸ ︷︷ ︸

B

[
u1(t)
u2(t)

]
︸ ︷︷ ︸
~u(t)

.

Example 4: Let p(t) be the number of EECS professors in a country
in year t, and let r(t) be the number of industry researchers with a
PhD degree. A fraction, γ, of the PhDs become professors themselves
and the rest become industry researchers. A fraction, δ, in each pro-
fession leaves the field every year due to retirement or other reasons.

Each professor graduates, on average, u(t) PhD students per year. We
treat this number as a control input because it can be manipulated
by the government using research funding. This means there will be
p(t)u(t) new PhDs in year t, and γp(t)u(t) new professors. The state
model is then

p(t + 1) = (1− δ)p(t) + γp(t)u(t)

r(t + 1) = (1− δ)r(t) + (1− γ)p(t)u(t).
(11)

Note that this system is nonlinear due to the product of the state
variable p with the input u. �

When the input ~u(t) in (8) is a constant vector ~u∗, the equilibrium
points are obtained by solving for ~x in the equation3: 3 Note that the equilibrium condition

(12) in discrete time differs from the
continuous time condition 0 = f (~x,~u∗).~x = f (~x,~u∗). (12)

If ~x∗ satisfies this equation and we start with the initial condition
~x∗, the next state is f (~x∗,~u∗), which is again ~x∗. The same argument
applies to subsequent time instants, so ~x(t) remains at ~x∗.

For the linear system (9) the equilibrium condition (12) becomes:

~x = A~x + B~u∗, or, equivalently (I − A)~x = B~u∗.
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