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State Space Representation of Dynamical Systems

State variables are internal variables that fully represent the state of
a dynamical system at a given time. In previous lectures we used
capacitor voltages and inductor currents as state variables of a cir-
cuit, and wrote differential equations that tell us how these variables
evolve over time. The vector of such variables is called a state vec-
tor and the vector differential equation governing their evolution is
called a state model.

Example 1: As a familiar example consider the RLC circuit depicted
on the right where vin denotes the input voltage.
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Since the capacitor and inductor satisfy the relations

C
dvC(t)

dt
= iC(t) (1)

L
diL(t)

dt
= vL(t), (2)

we select vC and iL as the state variables. We then eliminate iC from
(1) by noting that iC = iL, and eliminate vL from (2) using KVL
(vL + vC + vR = vin), Ohm’s Law (vR = RiR), and iR = iL:

vL = −vC − vR + vin = −vC − RiL + vin. (3)

Then the state model becomes
d
dt

vC(t) =
1
C

iL(t)

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) .

(4)

In a state model the left-hand side consists of derivatives of the state
variables and the right-hand side depends only on the state variables
and external inputs (vin in this example). Other variables appearing
in the equations, such as vL in (2), must be eliminated by expressing
them in terms of the state and input variables, as we did in (3).

We say that a state model is linear if the right-hand side depends
linearly on the state and input variables, as in (4) above. For a linear
model the right-hand side can be written as a matrix multiplying the
state vector, plus another matrix multiplying the input. Thus, for (4),

d
dt

[
vC(t)
iL(t)

]
=

[
0 1/C

−1/L −R/L

] [
vC(t)
iL(t)

]
+

[
0

1/L

]
vin(t). (5)
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Most physical systems, however, are nonlinear. We have already seen
nonlinear voltage-current curves for transistors2. The next example 2 However, since we focused on the

low-voltage region where a linear
approximation was adequate, we used
linear differential equations.

studies another nonlinear circuit element, the tunnel diode.

Example 2: A tunnel diode is characterized by a voltage-current
curve where, for a certain voltage range, the current decreases with
increasing voltage. This is due to a quantum mechanical effect called
tunneling.
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Now consider the circuit on the right. We again use the state vari-
ables iL and vC, and start building a state model using the relations

C
dvC(t)

dt
= iC(t) (6)

L
diL(t)

dt
= vL(t). (7)

The next task is to rewrite the right-hand side in terms of state
variables iL and vC, and input vin. To do so note from KCL that
iC = iL − iD and subtitute iD = g(vD) = g(VC), since vD = vC.
Thus, (6) becomes

C
dvC(t)

dt
= iL(t)− g(vC(t)), (8)

where only the state variables iL and vC appear on the right-hand
side. Likewise, using KVL, we substitute vL = −vC − RiL + vin in (7)
and obtain

L
diL(t)

dt
= −vC(t)− RiL(t) + vin(t). (9)

Dividing both sides of (8) by C and both sides of (9) by L, we obtain
the state model:

d
dt

vC(t) =
1
C

iL(t)−
1
C

g(vC(t))

d
dt

iL(t) =
1
L
(−vC(t)− RiL(t) + vin(t)) .

(10)

Since g is a nonlinear function, (10) is a nonlinear state model and
can’t be written in the matrix-vector form (5) we used in Example 1

to represent the linear model (4).
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General form of State Equations

A general state model with n states and m inputs has the form

d
dt

x1(t) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))

d
dt

x2(t) = f2(x1(t), · · · , xn(t), u1(t), · · · , um(t))

... (11)
d
dt

xn(t) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

where f1, · · · , fn are functions of the state and input variables.

In Examples 1 and 2 above we had n = 2 states x1 = vC and x2 = iL,
and a single (m = 1) input u = vin. Thus (10) has the form above with

f1(x1, x2) =
1
C

x2 −
1
C

g(x1), f2(x1, x2, u) =
1
L
(−x1 − Rx2 + u) .

We will henceforth write (11) compactly as

d
dt
~x(t) = f (~x(t),~u(t)) (12)

where

~x =


x1

x2
...

xn

 , ~u =


u1
...

um

 , f (~x,~u) =


f1(~x,~u)
f2(~x,~u)

...
fn(~x,~u)

 .

The state model (11) is linear if for each i = 1, . . . , n, the function fi

has the form

fi(x1, · · · , xn, u1, · · · , um) = ai1x1 + · · ·+ ainxn + bi1u1 + · · ·+ bimum,

where ai1, · · · , ain, bi1, · · · , bim are coefficients. In this case we can
write (12) in the matrix-vector form

d
dt
~x(t) = A~x(t) + B~u(t), (13)

where A is a n × n matrix and B is a n × m matrix. The ith column of
A consists of the coefficients ai1, · · · , ain and ith column of B consists
of bi1, · · · , bim. If there is only one input then B is n × 1, that is a
column vector, and we may write~b instead of B:

d
dt
~x(t) = A~x(t) +~bu(t).

For example, (5) is of this form with

A =

[
0 1/C

−1/L −R/L

]
, ~b =

[
0

1/L

]
.



ee16b - spring’20 - lecture 6a notes 4

In this module of the course we broaden our scope beyond circuits
and analyze other dynamical systems, such as mechanical systems,
again using state models. In circuit analysis we selected the state
variables to be the inductor currents and capacitor voltages, as these
variables are associated with the energy stored in these elements.
Likewise, in modeling mechanical systems it is customary to select
positions and velocities as the state variables, since the former is
associated with potential energy and the latter with kinetic energy.

Example 3: The motion of the pendulum depicted on the right is
governed by the differential equation

θ

`

mg

mg sin θ
m`

d2θ(t)
dt2 = −k`

dθ(t)
dt

− mg sin θ(t) (14)

where the left hand side is mass×accelaration in the tangential di-
rection, and the right hand side is total force acting in that direction,
including friction and the tangential component of the gravitational
force.

To bring this second order differential equation to state space form
we define the state variables to be the angle and angular velocity:

x1(t) := θ(t) x2(t) :=
dθ(t)

dt
,

and note that they satisfy

d
dt

x1(t) = x2(t)

d
dt

x2(t) = − k
m

x2(t)−
g
`

sin x1(t).
(15)

The first equation here follows from the definition of x2(t) as the
angular velocity, and the second equation follows from (14).

Here we did not consider external forces that could act as inputs, so
the equations (15) have the form (12) with the input omitted:

f (~x) =

[
x2

− k
m x2 − g

` sin x1

]
. (16)

Equilibrium States

For a system without inputs, d
dt~x(t) = f (~x(t)), the solutions of the

static equation
f (~x) = 0

are called equilibrium points. If we pick an equilibrium point ~x∗ as the
initial state at t0, then

d
dt
~x(t) = f (~x∗) = 0
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for all t ≥ t0, therefore the state remains at ~x∗ in the future:

~x(t) = ~x∗ t ≥ t0.

Example 3 revisited: We can find the equilibrium points for the
pendulum example above by solving the equation

f (~x) =

[
x2

− k
m x2 − g

` sin x1

]
= 0.

This consists of two equations,

x2 = 0, − k
m

x2 −
g
`

sin x1 = 0,

which have two distinct solutions:

x1 = 0, x2 = 0,

that is the downward pointing position of the pendulum, and

x1 = π, x2 = 0,

which is the upright position3. As this example illustrates, a system 3 Other solutions, such as (x1, x2) =
(2π, 0), or (x1, x2) = (3π, 0) are
identical to one of the two equilibria
already described.

may have more than one equilibrium. We will see later that the up-
right position is unstable, meaning that the pendulum would diverge
from this equilibrium when slightly perturbed. In contrast the down-
ward position is stable, because the pendulum would return to this
position after some oscillations with the help of the friction term.
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