EECS 16B Fall 2020 HW 11

This homework is due on Thursday, November 19, 2020, at 10:59PM.

Self-grades are due on Thursday, November 26, 2020, at 10:59PM.

1 Implementation: SVD and PCA

In this problem we will implement Principal Component Analysis (PCA) using Singular Value
Decomposition (SVD) in python.
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Figure 1: Example datasets that we will work with.

Figure (1| shows the three datasets that we will be working with. Each dataset is comprised
S |x o -
of entries X = xl . We will develop a procedure to calculate the principal components v; and
2

corresponding weights w; for this dataset by calculating an SVD of the matrix A. Use the supplied
iPython notebook to complete this problem.

a) Consider the following datasets. First, intuitively sketch the Principal Components (PCs)
that best explain this dataset. You don’t need to calculate the exact lengths of the principal
components but their relative lengths should approximately be correct.

b) We are given a set of data points ¥ € R?. Does our data have 0 mean? If not, subtract the mean
from this data and construct a new de-meaned matrix A.

c) Explain the relationship between

i) Diagonalization of the sample covariance matrix C = %ATA,
ii) Singular Value decomposition of A, and
iii) Principal Components of A.

In class, we have learnt that we can calculate the SVD (and thereafter PCA) of the matrix A
using the sample covariance matrix C. However, this approach is not used in practice for
numerical reasons. Some of the advanced classes on numerical methods delve deeper into
this topic. We will be using the inbuilt SVD-solver in python to get the SVD of our de-meaned

matrix A.
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d)

e)

What are the dimensions of the matrix A? If we were to compute the full-svd, what will be the
dimensions of matrices U, ¥, and V if the SVD is written as

A=uxvT 1)

Compute the principal components (unit vectors) and corresponding weights for the datasets.
Sketch them overlaid on the data (The weights have been scaled in the notebook to make
visualization neater). Does this match what you had expected at the beginning of the problem?
Comment on the differences in the principal components of the three datasets.

2 The Moore-Penrose Pseudoinverse for “Fat” Matrices

Suppose that we have a set of linear equations described as AX = /. If A is invertible, we know that
the solution is X = A™'jj. However, what if A is not a square matrix? In EE16A, you saw how this
problem could be approached for tall matrices A where it really wasn’t possible to find a solution
that exactly matches all the measurements. The linear least-squares solution gives us a reasonable
answer that asks for the “best” match in terms of reducing the norm of the error vector.

This problem deals with the other case — when the matrix A is short and fat. In this case, there
are generally going to be lots of possible solutions — so which should we choose and why? We will
walk you through the Moore-Penrose pseudoinverse that generalizes the idea of the matrix inverse
and is derived from the singular value decomposition.

a)

b)

Suppose that you have the following matrix.

1 -1 1
A= [1 1 —1}
Calculate the full SVD decomposition of A. That is to say, calculate U, Z, V, such that

A =UZXVT, where U and V are unitary matrices.

Leave all work in exact form, not decimal.
Note: Do NOT use a computer to calculate the SVD.

Let us think about what the SVD does. Let us look at matrix A acting on some vector X to give
the result ij. We have

AX=UrVTi=14.
Observe that U and V7T are unitary matrices, so they cannot change the norm of the input

vector while X scales the input vector. We will try to “reverse” these operations one at a time
and then put them together.

If U performs some transformation on the vector (ZVT) X, what is the inverse of U that cancels

its effect.

Recall that X has the same dimensions as A (m by n with m < n). Now find some diagonal T
that “inverts” . That is ¥, = Tixn Where Lx given below is a block diagonal identity matrix
with the top left block being an m by m identity matrix. You may assume that A has rank m.
By diagonal for some non square matrix, we mean that the top (for thin matrix) or left (for
wide matrix) square submatrix to be diagonal and zeros for the remaining submatrix.

T — Linscm Omx(n—m)
n O(n—m)xm O(n—m)x(n—m)
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d) What is the inverse of V7T that cancels its effect.

e) Try to use the previous parts to derive an “inverse” (which we will use A" to denote). That is
to say,
X=A"y.
The reason why the word inverse is in quotes (or why this is called a pseudo-inverse) is because
we're ignoring the “divisions” by zero.

f) Use AT to solve for X in the following system of equations.

HE e

3 Piecewise Linear interpolation

Suppose we have a discrete-time signal y,;(k) that we would like to interpolate.

We will assume that the discrete-time signal is of finite duration— that is, the signal “begins” at
some time k; and “ends” at some time k3, and we can assume y4(k) = 0 for k < k; and k > kq. For
example, if our discrete-time signal looked like this:

then we would have k; = 3, ky = 8.

One of the simplest ways to interpolate this signal would be to simply connect the points of the
discrete-time signal with straight lines. If we were to interpolate the signal above this way, we would
get this:
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As you can see, the interpolated signal y(t) is a straight line over intervals of the form [k, k + 1]
for all integers k, although the entire function y(t) is not itself a straight line. For this reason, we call
this y(t) the piecewise linear (PWL) interpolation of the discrete-time signal y4(k).

Although we’ve just described the PWL interpolation in an intuitive and somewhat ad hoc way,
it turns out that the PWL interpolation can be expressed as a basis function interpolation. in this
problem, you will show how this is true.

a)

b)

d)

Consider the function ¢(t) defined as,

_[1-1, tel-1,1]
¢(t) _{ 0, otherwise - (2)

Sketch ¢(t — k) for some arbitrary integer k. You may choose a specific integer for k in your
sketch (k = 3 perhaps), or you may keep the sketch entirely in terms of k. The graph in the
solution will be drawn in terms of k, so we encourage you to try it that way.

We'll be using the function ¢ () as the basis function for the PWL interpolation.

We will begin our analysis right at the beginning of the signal. Write the basis function and
coefficient that captures the line of y(¢) from ¢ = k; —1 tot = ky. That is to say, find real number
« and integer p such that,

y(t) =a¢p(t —p)fort € [k — 1, k]

Now, consider any integer k*such that k; < k* < ko. Over the interval [k*, k* + 1], the
interpolated signal y(t) is a straight line. What is the equation of this line? In other words, find
real numbers m and b such that

y(t) = mt + b, over the interval [k*, k* + 1]. 3)

Consider the function
g(t) = ya(k*)p(t — k*) + ya(k* + 1)p(t — (k* + 1))

This function is also a straight line over the interval [k*, k* + 1]. What is the equation of the
line over this region? Write it again in the form

y(t) = mt + b, over the interval [k*, k* + 1]. 4)

This should match your previous answer.
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e) Given what you've shown in the previous parts, we can now express the PWL interpolation of
y4(k) as a sum of shifted ¢ functions. Find the coefficients o such that

[ee]

y(t)= > axp(t —k). )

k=—00

hint: remember, our goal is to show that the PWL interpolation is a basis function interpolation with
basis function ¢. In that sense, the ay have already been chosen (consult your notes and the relavent
discussion handout), and you need only verify that they are correct.

4 Lagrange Interpolation by Polynomials

Given n distinct points and the corresponding sampling of a function f(x), (x;, f(x;)) for0 <i <n-1,
the Lagrange polynomial interpolation is the polynomial of the least degree that passes through all
of the given points.

Given n distinct points and the corresponding evaluations, (x;, f(x;)) for 0 < i < n —1, the
Lagrange polynomial interpolation is the n — 1! degree polynomial

i=n—1

P()= > fLix),
i=0

where _—
T Gmx) (mx) (e wie) (X)) (= Xe1)
He= JJJ#,- (xi — xj) ~ (xi = x0) (i = xi-1) (i = Xi41) (xi = xp-1)” ©

Here is an example: for two data points, (xo, f(x0)) = (0, 4), (x1, f(x1)) = (-1, -3), we have

x—x; _x—(=1)

LO(x)zxo—xl_O—(—1)=x+1
and L _x-x9 _ x—=(0)

iy py ) R
Then

P(x) = f(xo)Lo(x) + f(x1)L1(x) = 4(x + 1) + (=3)(—x) = Tx + 4.

We can sketch those equations on the 2D plane as follows:
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y=4x+Il)
y=7x+4
0, 4) y=3)(x)
X

0

(-1, -3) n
X1

In the figure above, the red line is the 0‘" interpolating polynomial L, weighted by the 0! function
values f(xp), y = f(x0)Lo = 4(x + 1). The blue line is the 1% interpolating polynomial L; weighted
by the 1°! function values f(x1), vy = f(x1)L1 = (=3)(—=x) = 3x. The black line is the interpolated
signal, P(x) = 7Tx + 4.

a)

b)

d)

Before we find the Lagrange interpolation, let us first use interpolation by global polyno-
mials so we can verify our Lagrange interpolation results. Using the polynomial function
basis {1, x,x2,---x""'}, the interpolation problem can be cast into finding the coefficients
ag,ai,ds, -+ ,a,—1 of the function

g(x) =ag+arx +ax® +--- +a,_x""

such that g(x;) = f(x;) for n samples of a function (x;, f(x;)) withi € {0,1,2,...,n — 1}.

Given three data points, (2, 3), (0, —1), and (-1, —6), find a polynomial ¢(x) = asx?+a;x +ag
fitting the three points using global polynomial interpolation. Is this polynomial unique?
That is, is it the only second degree polynomial that fits this data?

It is computationally expensive to do this process for large numbers of points, which is why
we use the Lagrange interpolation method.

The set of Lagrange polynomials {L;(x)}, i € {0,1,2,...,n — 1} is a new function basis for the
subspace of degree 1 — 1 or lower polynomials. Find the L;(x) given by Eq.[6|corresponding
to the three sample points in (a). Show your work.

P(x)is the sum of the Lagrange polynomials weighted by the function value at the corresponding
points, giving the Lagrange interpolation of the given points. Find the Lagrange polynomial
interpolation P(x) that goes through the three points in (a). Compare the result to the global
polynomial interpolation of the same points, which you calculated in (a). Are they different
from each other? Why or why not? Reason using the degree of the polynomials.

Plot P(x) and each f(x;)L;(x). You can use a plotting utility (e.g. matplotlib) and or plot by
hand.
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e) Show that P(x;) = f(x;) for all x;. Thatis, show that the Lagrange interpolation passes through
all given data points. Show this symbolically in the general case, not just for the example above.

5 Homework Process and Study Group

Citing sources and collaborators are an important part of life, including being a student!
We also want to understand what resources you find helpful and how much time homework is
taking, so we can change things in the future if possible.

a) What sources (if any) did you use as you worked through the homework?

b) If you worked with someone on this homework, who did you work with?
List names and student ID’s. (In case of homework party, you can also just describe the group.)

¢) Roughly how many total hours did you work on this homework?

d) Do you have any feedback on this homework assignment?
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