1. RLC Circuit with Vector Differential Equations

Consider the following circuit fed by a constant voltage source V_{S}.

The switch S_{1}, open for $t<0$, closes at $t=0$, and the switch S_{2}, closed for $t<0$, opens at $t=0$. Assume $V_{C}(0)=0$ and $I_{L}(0)=0$.
(a) Derive a set of two differential equations, one for $I_{L}(t)$, the current through the inductor, and one for $V_{C}(t)$, the voltage across the capacitor. Write your answer in terms of R, L, C, V_{S}, and constants.
(b) Using your answers from the previous part, create a vector differential equation with the state vector being $\vec{x}(t)=\left[\begin{array}{c}V_{C}(t) \\ I_{L}(t)\end{array}\right]$. Write your answers in terms of R, L, C, V_{S}, and constants.
(c) Regardless of your answer to the previous part, suppose the vector differential equation is given by

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \vec{x}(t)=\underbrace{\left[\begin{array}{cc}
-4 & -6 \tag{1}\\
\frac{1}{2} & 0
\end{array}\right]}_{A} \vec{x}(t)+\underbrace{\left[\begin{array}{l}
4 \\
0
\end{array}\right]}_{\vec{b}} V_{S}
$$

First, find the eigenvalues of the matrix A.
(d) Next, find the eigenvectors that will form your V basis.
(e) Now, in order to diagnolize the system, write A in terms of V, V^{-1}, and Λ. (HINT: For a 2×2 real matrix, the inverse of that matrix is $V^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.)
(f) With $\vec{x}(0)=\overrightarrow{0}$, solve for $\vec{x}(t)$ and find the asymptotic/steady-state behavior as $t \rightarrow \infty$. (HINT: Use the information from the previous part to perform a change of basis that simplifies the state equations.)

