
EECS 16B Designing Information Systems and Devices II UC Berkeley Spring 2024
Discussion 5A

1. Transfer Function Practice

Transfer functions take an input phasor and “transform” it into an output phasor. Most of the work
we will do with transfer functions is analyzing how it will “respond” to a specific kind of input.
We will also design our own transfer functions using common circuit components such as resistors,
inductors, and capacitors to achieve some specified behavior. A block diagram of a transfer function
is represented below. In this discussion, we will learn how to derive H(jω) from a given circuit, and
we will analyze how it behaves for certain values of ω.

Ṽin(jω) H(jω) Ṽout(jω)

Figure 1: Transfer Function Block Diagram

Recall that ZL = jωL and ZC = 1
jωC . For large ω, |ZL| = ωL becomes large (and becomes small for

small ω). On the other hand, for large ω, |ZC| = 1
ωC becomes small (and becomes large for small ω).

In this problem, you’ll be deriving some transfer functions. For each circuit:

• Determine the transfer function H(jω) =
Ṽout(jω)

Ṽin(jω)
.

• How does |H(jω)| respond as ω → 0 (low frequencies) and as ω → ∞ (high frequencies)?

• Is the circuit a high-pass filter, low-pass filter, or band-pass filter?

• For parts (a) and (b), find the cutoff frequency ωc, which is the frequency such that

|H(jωc)| =
|H(jω)|max√

2
(1)
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(a) RC circuit (R = 1 kΩ, C = 1 µF):

+

−
vin(t)

C

R

+

−

vout(t)

(a) Circuit in “time domain”

−
+Ṽin(jω)

ZC(jω)

ZR(jω)

+

−

Ṽout(jω)

(b) Circuit in “phasor domain”

Solution: We’ll use the voltage divider formula to find Ṽout(jω) :

Ṽout(jω) =
ZR

ZR + ZC
Ṽin(jω) (2)

Recalling the expression for the impendances, we note that for the resistor ZR = R, and for the
capacitor ZC = 1

jωC . Plugging in the impedances gives

H(jω) =
Ṽout(jω)

Ṽin(jω)
=

R
R + 1

jωC
=

jωRC
1 + jωRC

(3)

At low frequencies, we have

lim
ω→0

|H(jω)| = lim
ω→0

ωRC√
1 + ω2R2C2

= 0 (4)

At high frequencies, we have

lim
ω→∞

|H(jω)| = lim
ω→∞

ωRC√
1 + ω2R2C2

(5)

= lim
ω→∞

ωRC√
ω2R2C2

(6)

= 1 (7)

So this circuit is a high-pass filter.

For this transfer function, |H(jω)|max = 1. Thus, to find the cutoff frequency ωc, we need to find
when |H(jωc)| = 1√

2
.

|H(jωc)| =
1√
2

(8)

ωRC√
1 + ω2

c R2C2
=

1√
2

(9)

1 + ω2
c R2C2 = 2ω2R2C2 (10)

ωc =
1

RC
(11)

=
1

(103)(10−6)
= 103 rad

s
(12)
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Notice that this can be observed from the transfer function itself by writing it in the following
form:

jωRC
1 + jωRC

=
j ω

1
RC

1 + j ω
1

RC

=
j ω
ωc

1 + j ω
ωc

(13)
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(b) LR circuit (L = 5 H, R = 500 Ω):

+

−
vin(t)

L

R

+

−

vout(t)

(a) Circuit in “time domain”

−
+Ṽin(jω)

ZL(jω)

ZR(jω)

+

−

Ṽout(jω)

(b) Circuit in “phasor domain”

Solution: The strategy is the same as the previous part, using the voltage divider formula, i.e. ,

Ṽout(jω) =
ZR

ZR + ZL
Ṽin(jω)

A similar manipulation to the previous part gives

H(jω) =
Ṽout(jω)

Ṽin(jω)
=

R
R + jωL

(14)

At low frequencies, we have

lim
ω→0

|H(jω)| = lim
ω→0

R√
R2 + ω2L2

= 1 (15)

while at high frequencies, we have

lim
ω→∞

|H(jω)| = lim
ω→∞

R
R2 + ω2L2 = 0 (16)

So this circuit is a low-pass filter. Notice that this circuit resembles the one in the previous part,
except we have replaced the capacitor with an inductor.

For this transfer function, |H(jω)|max = 1. Thus, to find the cutoff frequency ωc, we need to find
when |H(jωc)| = 1√

2
.

|H(jωc)| =
1√
2

(17)

R√
R2 + ω2

c L2
=

1√
2

(18)

R2 + ω2
c L2 = 2R2 (19)

ωc =
R
L

(20)

=
500

5
= 102 rad

s
(21)

Notice that this can be observed from the transfer function itself by writing it in the following
form:

R
R + jωL

=
1

1 + j ω
R
L

=
1

1 + j ω
ωc

(22)
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(c) RCR circuit (R1 = 9 kΩ, R2 = 1 kΩ, C = 1 µF):

+

−
vin(t)

R1

C

R2

+

−

vout(t)

(a) Circuit in “time domain“

−
+Ṽin(jω)

ZR1(jω)

ZC(jω)

ZR2(jω)

+

−

Ṽout(jω)

(b) Circuit in “phasor domain”

Solution: Even though there are three components instead of two, we can still use the voltage
divider formula by treating R2 and C as a single impedance given by Z = ZC + ZR2 , giving us
Z = R2 +

1
jωC . This would give us

Ṽout(jω) =
Z

ZR1 + Z
Ṽin(jω) (23)

Then, the transfer function is

H(jω) =
Ṽout(jω)

Ṽin(jω)
=

R2 +
1

jωC

R1 + R2 +
1

jωC
=

1 + jωR2C
1 + jωC(R1 + R2)

(24)

At low frequencies, we have

lim
ω→0

|H(jω)| = lim
ω→0

√
1 + (ωR2C)2√

1 + (ωC(R1 + R2))
2
= 1 (25)

while at high frequencies, we have

lim
ω→∞

|H(jω)| = lim
ω→∞

√
1 + (ωR2C)2√

1 + (ωC(R1 + R2))
2

(26)

= lim
ω→∞

√
1

ω2 + (R2C)2√
1

ω2 + (C(R1 + R2))
2

(27)

=
CR2

C(R1 + R2)
=

R2

R1 + R2
(28)

So at high frequencies, this circuit behaves like a regular voltage divider with just R1 and R2, as
if the capacitor had vanished. This circuit is like a combination of a low-pass filter and a voltage
divider: low frequency inputs are preserved, and high-frequency signals are diminished.
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(d) Assuming vin(t) = 12 sin(ωint) compute the vout(t) using the transfer function computed in
part 1.a. Remember that R = 1 kΩ and C = 1 µF for this circuit, and assume ωin = 1000 rad

s . In
words, what is the effect of the transfer function in part 1.a on the magnitude and phase of the
input signal?

Solution: To get vout(t), we must first convert vin(t) into phasor domain to get Ṽin(jω), then
apply the transfer function to get Ṽout(jω), and then convert back to time domain to get vout(t).

To convert from time domain to phasor domain, we use the definition we derived previously:

vin(t) = V0 cos(ωt + θ) ↔ Ṽin(jω) = V0ejθ (29)

Firstly, note that sin(x) = cos
(

x − π
2
)
, so we can write vin = 12 sin(ωt) as vin = 12 cos

(
ωt − π

2
)
.

Pattern matching with the phasor definition (with V0 = 12 and ϕ = −π
2 ),

Ṽin(jω) = 12e−j π
2 (30)

Now, we can find Ṽout(jω) by multiplying the transfer function with the output phasor. Note that
we have to evaluate the transfer function at ω = ωin = 1000 rad

s since that is the input angular
frequency:

H(jωin) =
j(103)(103)(10−6)

1 + j(103)(103)(10−6)
(31)

=
j

1 + j
(32)

We will write H(jωin) in the form |H(jωin)|ej∠H(jωin), so that multiplying with Ṽin(jω) will be
easier. First, to find |H(jωin)|:

|H(jωin)| =
∣∣∣∣ j
1 + j

∣∣∣∣ = 1√
2

(33)

Next, to find ∠H(jωin):

∠H(jωin) = ∠(j)−∠(1 + j) =
π

2
− π

4
=

π

4
(34)

Hence, H(jωin) =
1√
2

ej π
4 , and

Ṽout(jωin) = H(jωin)Ṽin(jωin) = 6
√

2e−j π
4 (35)

The last step is changing back to the time domain. For this step, we can use the phasor definition
in the reverse direction:

vout(t) = 6
√

2 cos
(

1000t − π

4

)
(36)
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2. Linearity of Transfer Functions (Adapted from Hambley Example 6.1)

The transfer function H(jω) of a filter is shown in Figure 5.
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ω
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(a) Transfer Function Magnitude
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s )
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H
(j

ω
)

(b) Transfer Function Phase

Figure 5: Transfer Function H(jω)

If the input signal is given by

vin(t) = 2 cos
(

1000t +
π

6

)
+ 2 cos (2000t) (37)

find an expression for the output of the filter vout(t).

Solution: Since our input is composed on two sinusoids with different frequencies we need to analyze
them separately. Let’s call:

vin,1 = 2 cos
(

1000t +
π

6

)
(38)

vin,2 = 2 cos (2000t) (39)

Let’s first analyze the output of vin,1. By inspection, we see that ω = 1000. Using the provided graphs
of the magnitude and phase, we can determine |H(j1000)| = 3 and ∠H(j1000) = π

6 . Putting this
together we have:

H(j1000) = 3ej π
6 =

Ṽout,1

Ṽin,1
(40)

The phasor for the input signal is Ṽin,1 = 2ej π
6 , so solving for the output phasor we have:

Ṽout,1 = H(j1000)Ṽin,1 (41)

= 3ej π
6 × 2ej π

6 (42)

= 6ej π
3 (43)

Converting the output phasor back into a time function, we have:

vout,1(t) = 6 cos
(

1000t +
π

3

)
(44)
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Now, we will apply the same process for vin,2. We observe that ω = 2000. Then using the graphs
we know that |H(j2000)| = 2 and ∠H(j2000) = π

3 . We also can represent vin,2(t) as a phasor which
would be 2ej0◦ = 2. Putting this together and solving for the output phasor,

Ṽout,2 = H(j2000)Ṽin,2 (45)

= 2ej π
3 × 2 (46)

= 4ej π
3 (47)

Converting this into a time function, we get:

vout,2(t) = 4 cos
(

2000t +
π

3

)
(48)

Now combining the two output sinusoids we get:

vout(t) = 6 cos
(

1000t +
π

3

)
+ 4 cos

(
2000t +

π

3

)
(49)

Note: Recognize that applying the transfer function is also equivalent to multiplying the magnitude
of the transfer function (at the specified frequency) to the the magnitude/amplitude of the input and
then adding the phase shift of the transfer function (at the specified frequency) to the phase of the
input. In other words, one can use the magnitude and phase of the transfer function to get the output
signal without actually converting to the frequency/phasor domain.
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